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DIMENSION FOR A CANTOR-LIKE
SET WITH OVERLAPS

Mi RYEONG LEE, JUNG JU PARK AND HUNG HWAN LEE

ABSTRACT. In this paper we define a Cantor-like set K with over-
laps in R'. We find the correlation dimension of the set K without
two conditions: the control of placements of basic sets constructing
K and the thickness of K being greater than 1.

1. Introduction

In order to explain fractal sets, dimension so-called, the Hausdorff
dimension, box dimension or correlation dimension of fractal sets has
been studied by various authors. In recent, because of advantages of
dimension calculations and smaller value than the Hausdorff dimension,
they have investigated about the correlation dimension of fractal sets. So
far, it has been usually done the study about the correlation dimension
on similar sets or self-similar sets with overlaps in R ([1], [3], [7], [8])

In [1], [3] and [8], they have studied the correlation dimension defined
by the energy theory. For a self-similar set with overlaps in R! in [8],
they obtained the correlation dimension of the set under the condition
of the thickness of the set being greater than 1. In [3] they defined a
Cantor set with overlaps which is a generalization of self-similar sets
with overlaps in R!, and they obtained the correlation dimension of the
defined set under the above definition and the same condition.

On the other hand, in [5], for a given probability measure on R}, we
have known that the value of the correlation dimension defined by the
energy theory is less than or equal to the value defined by a partition into
R!. Also in [4], we can show that two definitions about the correlation
dimension are equivalent for a self-conformal probability measure.
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In [7], without the condition of thickness, using the equivalent defi-
nition of the correlation dimension, they introduced the correlation di-
mension on Rams theorem of a self-similar set with overlaps in R!.

In present paper, we consider a generalized Cantor-like set K with
overlaps of sets in [3],[7] and [8]. We omit two conditions which play
important roles in the results in [3] and [8]: the control of placement of
basic sets constructing K except for the first and last sets ([3]) and the
thickness of K being greater than 1([3], [8]).

In this paper, in order to obtain the correlation dimension of K, we
use the energy theory for the upper bound and the equivalent definition
in [4] and [7] for the lower bound. Finally we show that the facts in [3],
[7] and (8] is also true from our result.

2. Preliminaries

Let us introduce the construction of a Cantor-like set with overlaps
in R!. Consider X = [0, 1]. Fix an integer number /(> 3). Suppose
that a sequence of mappings {fi iy, i © (01,7 ,3n) € {1,2, ---, [}"
forn=1,2,---} and numbers 0 < r1,79,- -+ ,7; < 1 are given such that
(2) firjig, e in + X — X is defined as fi1,-~-,in(x) = 1, T + i ... 4, for
some t;, ... ;, € R and each i; € {1,2,--- ,I}(j =1,2,--+ ,n) (i) for any
n > 1, a basic set X, iy i = fi; © firio © 0+ © firig . in (X) contains
[-basic sets Xil,i%... Jin,1s Ii1 2, in,2 and Iil,iz,m Jin,ly SO that the left-hand
ends of I, i, ... 5, and I, 4, .. ;,,1 and the right-hand ends of I;, ;, ...
and I;, 4, ... i, coincide.

Set
K= U Xiyjinyesim-

n=1 (7;1?"' 7in)€{17"' ,l}n
We call this K a Cantor-like set with overlaps.

,in, itn

REMARK 2.1. (1) We note the following control (|3]) in the construc-
tion of the set K: (iii) there exists a constant 0 < ¢ < 3 such that
firig,in(X) C [e,1 —¢] for ip # 1,l(n = 1,2,---). That is, in this
paper the restriction of placement of basic sets except for the first and
last sets is eliminated.

(2) We notice that in particular, if we assume that the condition
fir, o in = fip forallm > 1, 4.e t;, .. ; = 1t;, and r;,, = r, for i; €
{1,2,---,1}, then the family {fi}\_; gives a one parameter family of
self-similar iterated function system in [6] and [7] in R
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We acopt notations used in [3] and [8].

Put & = {1,2,---,1}N. For i = (i1,4,---) € £, we define an onto
map Il from ¥ to K as

oo
T(G) = [ fir © fasiz @ © firsinrsin(X).
n=1

FOTi=(i1,’i2,"' ,in7"’),j=(jl,j2,"‘,jm, "')627 Writei/\j=

i1,12," "+ ,in, Where n = min{k : ig41 # Je41 for k > 1} If 41 # 51
then i A j = 0. Define a metric p on T as p(i,j) = "N, where r*t»n
=Ty, " Tiy - Ty,. Write [iy] for a cylinder set, [i1, - ,ip) ={jE€ X ik =

g for 1 < k < m, ipy1 # jn+1}- The metric p2 on ¥ x ¥ is defined as
p2((iaj)’ (il’j,)) = max{p(i,i’), p(j’jl)} ) .

For any € > 0, we say that [i,] is an e-cylinder if r't'n < e <
ritin=1 The set [in,jm] = [in] X [jm] is an e-cylinder in 2 = £ x ¥
if both [i,] and [j,] are e-cylinders in X. The set of e-cylinders in ¥
is denoted by H.. The collection of e-cylinders in £2, H? = H, x H,
provides a disjoint cover of ¥? by sets of diameter ¢ ([3], [8]).

The number s > 0 with S 7% = 1 is called the simalarity di-
mension ([3]). Consider the probability measure y on ¥ with weights
(risrsy-- 1), dee. p([in]) = rf - 7f,---rf for any n > 1. Define the
push-down measure v = poII"! on A and let po = p x p. Then v and
po are probability measures on A and L2, respectively.

Denote the diameter of a set A by |A|.

REMARK 2.2. ([3]) (1) For an e-cylinder [i,], roe < |[in]| < € where
ro = min{ry, - , 7}

(2) The measures of e-cylinders [i,] and [in, jm] satisfy (ro)%€® <
u( [in] ) < € and (10)*€®* < pa( [in, jm] ) < €.

Recall the upper boz dimension ([2]) of a bounded set E in a metric
space which is denoted by dimgFE. That is,

S !
dimgF = limsup 08\ E) N(E,€)
R —loge

)

where N(E,€) is the smallest number of balls of diameter € needed to
cover E. From easy calculations (cf. [2]), we get the following result.

PROPOSITION 2.3. ([3]) For E C %2, let N.(E) be the number of
e-cylinders intersecting . Then

dimpg(E) = limsup M.
e—0 — loge
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We recall the following definition of the correlation dimension ([1],
[3], 5], [8]) of A(C R?) with respect to a probability measure 7 on A;

Dy(A,n) =sup{a > 0: I4(n) < oo} =inf{a > 0: I,(n) = oo},

where Io(n) = [[, |z —y|~*dn(z)dn(y) is the a-energy of A with respect
to n.
In [4], we can see that for every ¢ > 0, a fixed partition D, of R

2
into a grid of intervals of length 2¢, lim._,q lf—g—z—QﬁJ

self-conformal probability measure n on A. Further, from [5], we obtain
that for the such measure 7, the limit value is equal to Dy(A, 7).

Throughout this paper, for K a Cantor-like set with overlaps and v
the push-down probability measure on K, we write Dy(K) for Do(K, v)
and Io(v) for In(v) = [go | TI(i) — II(j) |~ *duse.

exits under a

3. Results

Throughout this paper, let K, I, i, v and s be as in Section 2. We
may assume that 0 < s < 1.

Set Z = {(i, j) € ¥? : II(i) = I(§)} and A(Z) = {[in,jm] € H2
lin,Jm] N Z # 0}. Denote N, = N(Z) for the cardinality of A.(Z).

For the upper bound about the correlation dimension of K, we cal-
culate the a-energy of K for the probability measure v.

Write Kil,iz,--~,in = fil o] fil,’i2 ©-«-+0 fil,"',in (K) for alli = (il, ey,
In, ) € L.

PROPOSITION 3.1.
Dz(K) < 28— RBZ.
PROOF. Suppose o > 2s — dimpZ. Let [in, jm] € Ac(Z). Then

lin, Jml N Z # 0, and so Ky iy, in N Kjy jo, e jm # 0. Hence for any
i€ [in] and j € [jm], using Remark 2.2(1),

|H(i) - H(j)l S |Kilyi21'"ai‘n| _+_ |Kj1:j2,"'7jm|
= (/i i) |K
2e.

IN

Therefore, by Remark 2.2(2),
/[, ) = TG di 2 277 i, 3]
1n, Jm

> 9« Tgs 625—(1‘
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We have
L) = 1100 ~TLG) |~ duy

>3 /[ )~ G d

A(Z)
Z ClNe 623-—0(’

where C1 = 27%(r)?*. Thus, if dimpZ = limsup,_, 2 loge > 25 — a,
then I,(v) = co. By the definition of Dy(K), we have Do(K) < 25 —
dimpZ. O

THEOREM 3.2. Dy(K) > 2s — dimpZ.

PRrROOF. For € > 0, we consider a partition D, of R into a grid of
intervals of length 2e. The set of centers of such intervals is called C..
Put I.(z) for interval grid with center z.

Let € > €. For 2’/ € C., let

e = #{lin]) € He : X5, NI (') # 0}.
First, we prove that

, N2 !
(1) 1<E”€C’N (@ )<3'y2
€

where y = | 219 (c +6 )| +1. To see the second 1nequahty, fixaaz €C. If

Xi, NI (z)) ;é (0 then X, C (&' — (¢ +¢€), 2’ + (¢ +¢€)). Subdivide
the interval I+ (2') into subintervals of length rge. There are exactly
v end points of such intervals. Thus there is such an end point of an

NEI,E(ZL'/
Y

interval which is contained in at least ) basic sets corresponding

to elements of H,.
2 /

So there are at least Ne—éfygz—) pairs of basic sets corresponding to
elements of H, which intersect each other and which can be associated
uniquely with z’.

Next, we prove that there exists a constant Cy > 0 such that

Ysec, V2 (Ie(x))

(2) 25 . N, < Cs.

For any z € C, let 2’ be the center of interval grid D which contains z
in its interior or as its right end point.
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Let 2, and z’; be centers of the two neighborhoods of I(z) in D..
From the definition of the measure v = o II™!, we have

v(Ie(z))

il

v(Ie(z) N K) < v(Uj en, (Le(z) N X))

u(U{lin] € He : X3, N 1e(a') # 0})

p(U{[in] € He : Xi, N (Le(a]) U Lo (2') U Lo (2g)) # 0})

Y w({lia] € He: X, 0 (T (2l) U La(a') U I (zg)) # 03)
€ (Ner e(2]) + Ner (') + Ne (zR))-

IN A

AN

I/\

Then we have

v2(Ie(z)) < €% - 3(NZ (2L) + N& (a') + NZ (zR))-

[

Take € = ae for some a > 2. Hence we obtain

3 VA (I(2) <3-€-a Y (N, N& (@) + N2 (2)

z€C, z’'eC
<3-3.a-¢” ) Ni
JI'ECGI

SO

Ywec, V2 Ue(2))
e2s Za: 'eC,s N2 (:E’)

for some a > 2. Therefore, using (1), we can obtain that for a constant
Cy >0,

< 9a

Yzec, V2 (Le(2))
€2 . N,
Owing to the existence of the limit for the correlation dimension,

2 Ie
lim Z(EGCC v ( (CII)) > 2g — 1 lOgN )
e—0 loge o = loge

< (Y.

From Proposition 2.3 and (2), we have the result. O

REMARK 3.3. In Proposition 3.1, we note that we have the result
without the condition (éé¢) in [3]. Also in Theorem 3.2, we notice that
we can have the result without two conditions of thickness of K being
bigger than 1 and the condition (¢i¢). In [3] and [8], under such two
conditions, it is hold that Ds(K) = 2s — dimpZ.
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Write T = (1,1,1,---) and i,1 = (41,4, - ,in, 1,1,-++) (n > 1).
Then the left end point of Xj, is II(i,1) for all n > 1. Therefore, for
[in, Jm] € HZ,

Xi, N Xj,, N K # 0 if and only if |II(i,1) — H(j1)| <e.

COROLLARY 3.4.

w— log #{[in, jm] € HZ : [I(i,1) — M mD)| < €}

li = 2s — Dyo(K).
20 —loge s 2(K)
Proor. Using Proposition 3.1 and Theorem 3.2, we can have the
above result. O
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