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PROPERTIES ON TYPES OF PRIMITIVE NEAR-RINGS

Yong Uk CHO

ABSTRACT. Throughout this paper, we will consider that R is a
near-ring and G an R-group. We initiate the study of monogenic,
strongly monogenic R-groups, 3 types of nonzero R-groups and
their basic properties. At first, we investigate some properties of
D.G. (R, S)-groups, faithful R-groups, monogenic R-groups, simple
and R-simple R-groups. Next, we introduce modular right ideals,
t-modular right ideals and 3 types of primitive near-rings. The
purpose of this paper is to investigate some properties of primitive
types near-rings and their characterizations.

1. Introduction

Let R be a (left) near-ring. If R has a unity 1, then R is called
unitary. If 0 is the neutral element of the group (R, +), then the left
distributivity law implies the identity a0 = 0 for all a € R. However, Oa
is not equal to 0, in general. An element d in R is called distributive if
(a +b)d = ad + bd for all a and b in R. A near-ring R with (R, +) is
abelian is called an abelian near-ring.

We consider the following notations: Given a near-ring R, Ry = {a €
R | Oa = 0} is called the zero symmetric part of R,

R.={a€R|0a=a}={a€e R|ra=a, for all r € R}
which is called the constant part of R, and
Ry = {a € R a is distributive}
is called the distributive part of R.
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We note that Ry and R. are subnear-rings of R, but Ry is not a
subnear-ring of R. A near-ring R with the extra axiom Oa = 0 for
all a € R, that is, R = Ry is said to be zero symmetric, also, in case
R = R, Ris called a constant near-ring, and in case R = Ry, R is called
a distributive near-ring. From the Pierce decomposition theorem, we get

R=Ry® R,

as additive groups. So every element a € R has a unique representation
of the form a = b+ ¢, where b € Ry and ¢ € R..

One defines a subset H of R such that RH C H is called a left R-
subset of R, a subset H of R such that HR C H is called a right R-subset
of R, and a left and right R-subset H is said to be a (two-sided) R-subset
of R.

Let (G, +) be a group (not necessarily abelian). In the set

MG):={f|f:G— G}

of all the self maps of G, if we define the sum f + g of any two mappings
f, g in M(G) by the rule z(f + g) = zf + zg for all x € G (called the
pointwise addition of maps) and the product f- g by the rule z(f - g) =
(zf)g for all z € G, then (M(G), +, -) becomes a near-ring. It is called
the near-ring of self maps on G. :

Also, if we define the set

Mo(G) :={f € M(G) | of = 0}

for additive group G with identity o, then (Mo(G), +, -) is a zero
symmetric near-ring.

Let R and S be two near-rings. Then a mapping 6 from R to S is
called a near-ring homomorphism if for all a, b € R, (i) (a+b)0 = af+b6
and (ii) (ab)d = abbb.

Let R be any near-ring and G an additive group. Then G is called
an R-group if there exists a near-ring homomorphism

6:(R, +, ) — (M(@), +, ).

Such a homomorphism € is called a representation of R on G, we
write that zr (right scalar multiplication in R) for z(6,) for all z € G
and r € R. If R is unitary, then R-group G is called unitary. Thus an
R-group is an additive group G satisfying (i) z(a +b) = za + zb, (ii)
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z(ab) = (za)b and (iii) z1 = z ( If R has a unity 1 ), for all z € G and
a, b € R. Sometimes, we abbreviate this R-group G simply as Gp.

‘We note that R itself is an R-group called the regular R-group.

Moreover, naturally, every group G has an M(G)-group structure,
from the representation of M(G) on G given by applying the f € M(G)
to the z € G as a scalar multiplication zf. Also, M(G) is a regular
M (G)-group.

An R-group G with the property that for each z, y € G and a € R,
(z+y)a = za+ya is called a distributive R-group, and also an R-group
G with (G, +) is abelian is called an abelian R-group. For example, if
(G, +) is abelian, then M(G) is an abelian near-ring and moreover, G
is an abelian M(G)-group, on the other hand, every distributive near-
ring R is a distributive R-group. We will make an exhibition that the
existence of distributive abelian R-groups in this chapter 2.

We denote that the neutral element of G as o, this is different from
the neutral element 0 of the near-ring R, also we write the trivial groups
(or ideals) of G and R are {0} =: 0 and {0} =: 0 respectively.

A representation 6 of R on G is called faithful if Kerf = {0}. In this
case, we say that G is called a faithful R-group, or that R acts faithfully
on G.

For an R-group G, a subgroup T of G such that TR C T is called
an R-subgroup of G, and an R-ideal of G is a normal subgroup N of G
such that (N +z)a — za C N for all z € G, a € R. The R-ideals of the
regular group R are precisely the right ideals of R. Also, a subgroup V
of G such that VR C V is called an R-subset of G.

Let G, T be two additive groups (not necessarily abelian). Then the
set

M@G, T)={f|f:G—T}

of all maps from G to T becomes an additive group under pointwise
addition of maps. Since M(T) is a near-ring of self maps on T, we note
that M (G, T) is an M(T)-group with a scalar multiplition:

M(G, T) x M(T) — M(G, T)

defined by (f, g) — f - g, where z(f - g) = (zf)g for all z € G.

Let G and T be two R-groups. Then the mapping f : G — T
is called a R-group homomorphism if for all z, y € G and a € R, (i)
(x+y)f ==xf +yf and (ii) (za)f = (zf)a. In this paper, we call that
the mapping f : G — T with the condition (za)f = (zf)a is an R-map
(or R-homogeneous map [7]).
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Also, we can replace R-group homomorphism by R-group monomor-
phism, R-group epimorphism, R-group isomorphism, R-group endomor-
phism and R-group automorphism, if these terms have their usual mean-
ings as for modules ([1]).

A near-ring R is called distributively generated (briefly, D.G.) by S if

(R,+)=gp<S>=gp<Ry>

where S is a semigroup of distributive elements in R.

In particular, S = Ry (this is motivated by the set of all distributive
elements of R is multiplicatively closed and contain the unity of R if it
exists), where gp < S > is a group generated by S, we denote this D.G.
near-ring R which is generated by S is (R, S).

On the other hand, the set of all distributive elements of M(G) are
obviously the set End(G) of all endomorphisms of the group G, that is,

(M(G))a = End(G)

which is a semigroup under composition, but not yet a near-ring. Here
we denote that E(G) is the D.G. near-ring generated by End(G), that
is,

E(G) = (M(G)), End(G)).

Obviously, E(G) is a subnear-ring of (Mp(G), +,-). Thus we say that
E(G) is the endomorphism near-ring of the group G.
Let (R,S) and (T,U) be D.G. near-rings. Then a near-ring homo-
morphism
6:(R,S)— (T,U)

is called a D.G. near-ring homomorphism if S8 C U. Clearly, any near-
ring epimorphism 6 : (R,S) — (T,U) is a D.G. near-ring homomor-
phism.

Note that a semigroup homomorphism 8 ;: S — U is a D.G. near-
ring homomorphism if it is a group homomorphism from (R, +) to (T, +)
({51, o))

For the remainder concepts and results on near-rings and R-groups,
we refer to J. D. P. Meldrum [9], and G. Pilz [10].

2. Some properties on monogenic R-Groups

There is a module like concept as follows: Let (R, S) be a D.G. near-
ring. Then an additive group G is called a D.G. (R, S)-group if there



Properties on types of primitive near-rings 605

exists a D.G. near-ring homomorphism
6: (R,S) — (M(G), End(G)) = E(G)

such that S8 C End(G). If we write that xr instead of z(6,) for all
z € G and r € R, then an D.G. (R, S)-group is an additive group G
satisfying the following conditions:

z(rs) = (zr)s, z(r +s) = ar + xs,
for all x € G and all ,s € R, and
(x+y)s=zs+ys,

for all z,y € G and all s € S.

Such a homomorphism 6 is called a D.G. representation of (R, S) on
G. This D.G. representation is said to be faithful if Kerf = {0}. In
this case, we say that G is called a faithful D.G. (R, S)-group. For any
R-group G, we define also the set

Mgp(G):={fe M(G) | (zr)f = (xf)r, forallz € G, r € R}

of all R-maps on G.

Let R be a near-ring and let G be an R-group. If there exists = in
G such that G = zR, that is, G = {zr | r € R}, then G is called a
monogenic R-group and the element z is called a generator of G, more
specially, if G is monogenic and for each z € G, xR = o or zR = G,
then G is called a strongly monogenic R-group.

For any group G, M(G)-group G and My(G)-group G are strongly
monogenic which are appeared in G. Pilz [10]. It is clearly proved that
G # 0 if and only if GR # 0 for any monogenic or strongly monogenic
R-group G.

LEMMA 2.1. Let R be a near-ring and G an R-group. Then we have
the basic concepts:

(1) IfI is a right ideal of R, then IRy C I.
(2) If A is an R-ideal of G, then A is an Ry-subgroup of G.

From this useful lemma, we obtain the following several properties.

LEMMA 2.2. For a near-ring R, the following are equivalent:

(1) R is a zero symmetric near-ring.
(2) Every right ideal of R is an R-subgroup of R.
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PRrROOF. (1) = (2) is obtained from the Lemma 2.1 (1).

(2) => (1) Suppose that every right ideal of R is an R-subgroup of
R. Since 0 is clearly a right ideal of R, 0 is an R-subgroup of R. Thus
OR = 0. This implies that R = Ry. O

LEMMA 2.3 ([10]). For an R-group G, we have the following:

(1) For any z in G, zR is an R-subgroup of G.
(2) For any R-subgroup A of G, we have that oR = oR. C A.

In Lemma, 2.3 (2), oR is the smallest R-subgroup of G under all R-
subgroups of G, So throughout this paper, we will write that

oR =0oR, =: Q.

We note that if R is zero symmetric, then Q = {0} =: 0, and Q = zR,
for all z € G.

From this Lemma 2.3 (2), we define the following concepts: An R-
group G is called simple if G has no non-trivial ideal, that is, G has
no ideals except 0 and G. Similarly, we can define simple near-ring as
ring case. Also, R-group G is called R-simple if G has no R-subgroups
except 2 and G. '

LEMMA 2.4. For an R-group G and A is a subgroup of G, we have
the following:

(1) A is an R-ideal of G if and only if A is an Ry-ideal of G.
(2) A is an R-subgroup of G if and only if A is an Ry-subgroup of
G and Q) C A.

PROOF. (1) Necessity is obvious. Suppose A is an Ryp-ideal of G. Let
a €A, x € Gandr € R. Then since R = Ry & R., we rewrite that
7 =5+t, where s € Ry and ¢t € R.. Thus we have

(a+z)r—zr =(a+z)(s+t)—z(s+t)=(a+zx)s+ (a+T)t—xt—25

Here, since t € R, (a+z)t —zt =t —t = 0 so that (a+z)r —zr = (a+
z)s—xs. Also since s € Ry and A is an Rop-ideal of G, (a+z)s—zs € A,
that is (a + z)r — zr € A. Consequently, A is an R-ideal of G.

(2) This statement can be proved as a similar method of the proof of
(1). O

Lemma 2.1 (2) and Lemma 2.4 imply the following statement.
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PROPOSITION 2.5. For an R-group G with  # o, we have the fol-
lowing:

(1) G =9Q if and only if G is strongly monogenic.

(2) Ro-simplicity implies simplicity for G.

PROPOSITION 2.6. Let G be an abelian D.G (R, S)-group. Then the
set Mp(G) :=={f € M(G) | (zr)f = (zf)r, forallz € G, r € R} is a
subnear-ring of M (G).

PRrROOF. Let f, g € Mr(G). For any x € G and r € R, since R is a
D.G. near-ring generated by S, consider that

r = 0181 + 0282 + 0353 + - - - + OnSn,
where §; =1, or ~1 and s; € S for 1 = 1,--- ,n. We have that

(zr)(f +9)
= (zr)f + (zr)g = (zf)r + (zg)r
= zf(6151 + 0252+ -+ 8nsn) + 2g(6151 + 250 + - Onsp)
= 20181 + xgd181 + xfd282 + 2gdasa + -+ -+ xfépsn + 290,y
= 012 fs1 + d1xgs1 + dax fso + doxgsa + « - + Sz fSn + 0pxgsy,
= 61(zfs1 +zgs1) + da(xfs2 +2gsa) + -+ -+ 6n(xfsn + 2g5s)
= 01(zf +xg)s1 + d2(zf +2g)sa + -+ + 6n(zf +29)s,
= (zf +x9)0181 + (xf + 2g)dasa + -+ (xf + 19)0nSn
= (xf +x9)(6151 + 0282 + -+ - + 6 Sn)
= (zf +zg)r =z(f +g)r.

Similarly, we have the following equalities:

(@r)(=f) = —(zr)f = = (@f)r =z(=f)r

and
(@r)f-g=((zr)f)g = (&f)r)g = (@f)gr = z(f - g)r.
Thus Mg(G) is a subnear-ring of M(G). O

In ring and module theory, we obtain the following important struc-
ture for near-ring and R-group theory:
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COROLLARY 2.7 (C. J. MaXsoN [7]). Let R be aring and V a right
R-module. Than Mg(V) .= {f € M(V) | (zr)f = (zf)r, forall z €
V, r € R} is a subnear-ring of M (V).

ExampLE 2.8. If R is a distributive unitary near-ring, then R is a
ring (See [10, 1.107]). Furthermore, if R is a distributive unitary near-
ring, then every unitary R-group is abelian, and a unitary E-module.

PROOF. Let G be a unitary R-group. Then 2(2) =z(1+1) =z + =z,
for all z € G. Thus we see that

rty+r+y=(r+y)2) =z2)+y2)=z+zr+y+y,

for all z,y € G. This implies that (G, +) is abelian. Since R = S, the set
of all distributive elements as a D.G. near-ring of R, (z +y)r = zr + yr,
for all z,y € G and all r € R. Hence G becomes a unitary R-module. (J

LeMMA 2.9 ([8]). Let (R,S) be a D.G. near-ring. Then all R-
subgroups and all R-homomorphic images of a D.G. (R, S)-group are
also D.G. (R, S)-groups.

Let G be an R-group and K, K; and K> be subsets of GG. Define

(Kl : KQ) = {a € R'K2U/ C Kl}

We abbreviate that for x € G, ({z} : K2) =: (z : K2) (0 : K) is called
the annihilator of K, sometimes denoted it by A(K). Easily, we can
drive that G is a faithful R-group if A(G) = {0}, that is, (0 : G) = {0}.

LeMMA 2.10 ([3]). Let G be an R-group and K; and K, subsets of
G. Then we have the following conditions:

(1) If K, is a normal subgroup of G, then (K1 : K3) is a normal
subgroup of a near-ring R.

(2) If K, is an R-subgroup of G, then (K : K3) is an R-subgroup
of R as an R-group.

(3) If K, is an R-ideal of G and K is an R-subset of G, then (K7 :
K>) is a two-sided ideal of R.

PRrROOF. (1) and (2) are proved by G. Pilz [10] and J. D. P. Meldrum
[9]. Now, we prove only (3) : Using the condition (1), (K; : K2) is a
normal subgroup of R. Let a € (K7 : K») and r € R. Then

Ks(ra) = (Kar)a C Kea C Kj,
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since K is an R-subset of G, Kor C K so that ra € (K1 : K3). Whence
(K1 : K3) is a left ideal of R.
Next, let 1,72 € R and a € (K; : K3). Then

k{(a+r1)re — rira} = (ka + kri)rg — krire € Ky

for all k € K3, since Kza C K; and K is an ideal of G. Thus (Kj : K>3)
is a righ® ideal of R. Consequently, (K7 : K2} is a two-sided ideal of R.O

CoOROLLARY 2.11 ([9], [10]). Let R be a near-ring and G an R-
group.

(1) For any z € G, (o: z) is a right ideal of R.

(2) For any R-subset K of G, (0: K) is a two-sided ideal of R.

(3) For any subset K of G, (0: K) = cx(0: z).

REMARK 2.12. For any R-group homomorphism f : G — T, we
have (0 : G) C (0o : f(G)). So every monomorphic image of a faithful
R-group is also faithful. Moreover, for any R-group isomorphism f :
G — T, we have (0 : G) = (0 : T)). In this case, G is faithful if and
only if T is faithful.

The following statement is proved very easily, but it is important
later.

LEMMA 2.13 [10]. Let G be a faithful R-group. Then we have the
following conditions:

(1) If (G, +) is abelian, then (R, +) is abelian.

(2) If G is distributive, then R is distributive.

From this Lemma, we get the following Proposition:

ProrosiTION 2.14. If G is a distributive abelian faithful R-group,
then R is a ring.

PROPOSITION 2.15. Let R be a near-ring and G an R-group. Then
we have the following conditions:
(1) A(G) is a two-sided ideal of R. Moreover G is a faithful R/A(G)-

group.
(2) For any z € G, we get tR = R/(0: x) as R-groups.
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Proor. (1) By Corollary 2.11 and Lemma 2.10, A(G) is a two-sided
ideal of R. We now make G an R/A(G)-group by defining, for z €
R,A(G) +r € R/A(G), the action z(A(G) +r) = ar. If A(G) +7r =
A(G) + s, then r — s € A(G) hence z(r — s) = 0 for all z in G, that is
to say, xr = xs. This tells us that

z(AG)+r)=zr =25 = z(A(G) + s)

Thus the action of R/A(G) on G has been shown to be well defined.
The verification of the structure of an R/A(G)-group is a routine trivi-
ality. Finally, to see that G is a faithful R/A(G)-group, we note that if
z(A(G) + 1) = o for all z € G, then by the definition of R/A(G)-group
structure, we have zr = o. Hence r € A(G), that is, A(G) +r = A(G).
This says that only the zero element of R/A(G) annihilates all of G.
Thus G is a faithful R/A(G)-group.

(2) For any = € G, clearly zR is an R-subgroup of G. The map
¢ : R — zR defined by ¢(r) = zr is an R-group epimorphism, so that
from the isomorphism theorem for R-groups, since the kernel of ¢ is
(0: ), we deduce that

zR=R/(0:x)

as R-groups. O
PROPOSITION 2.16. If (R, S) is a D.G. near-ring, then every mono-
genic R-group is a D.G. (R, S)-group.

PrOOF. Let G be a monogenic R-group with x as a generator. Then
the map ¢ : r — zr is an R-group epimorphism from R to G. We see
that by Proposition 2.15 (2),

G = R/A(x),

where A(z) = (0 : ) = Ker¢. From the Lemma 2.9, we obtain that G
is a D.G. (R, S)-group. a

LEMMA 2.17. Let G be an R-group. Then G is faithful if and only
if for each x € G, R = zR.

PROOF. Suppose G is a faithful R-group. Then we can easily define
the map f : a — za which is an R-group epimorphism from R to zR
as R-groups for each x € G.



Properties on types of primitive near-rings 611

To show that f is one-one, if f(a) = f(b) for a, b € R, then za = xb,
that is, z(a—b) = o for all 2 € G. This implies that a—b € (), (0 : %),
which is equal to (0 : G) = A(G) from Proposition 2.11 (3). Since G is
faithful, « — b= 0. Hence for all z € G, R & zR.

Conversely, assume the condition that R = xR for all x € G. Consider
the map f: R — xR given by a — za is an R-group isomorphism.
To show that G is faithful, take any element a € A(G), that is, Ga = o.
This implies that for all z € G, za = o, that is, f(a) = o. Since f is an
R-group isomorphism, a = 0.

Consequently, G is faithful. O

The following statement is a generalization of the Proposition 2.14.

PropOSITION 2.18 [3]|. Let (R,S) be a D.G. near-ring. If G is an
abelian faithful D.G. (R, S)-group, then R is a ring.

The following proposition is useful in chapter 3 to make R-group of
type 2 which is the analogous notion of simplicity, and primitive near-
ring of type 2 which is the similar notion of primitivity in ring and
module theory.

PROPOSITION 2.19. Let G be a monogenic R-group with generator
. Then we have the following properties:

(1) For any right ideal I of R, xI is an R-ideal of G.

(2) If I is a left R-subgroup of R and zI is an R-ideal of G, then
(I : z) is an ideal of R.

(3) Ife is a right identity of R and if G is a faithful R-group, then
e is a two-sided identity of R.

(4) IfG is Ry-simple, then either GR = o or G is strongly monogenic.

PRrOOF. (1) Let a € G. Then there exists t € R such that a = zt.
Thus for each 2y € zI,r € R, and a € G,

(a+ zy)r —ar = (zt + xy)r — (xt)r = z(t + y)r — z(tr)
=z{(t+y)r—tr} eal
In this same method, it is easily shown that zI is an additive normal
subgroup of G. Therefore x1 is an R-ideal of G.
(2) For any y € I and a, b € R, we obtain the following equality:

z{(y + a)b— ab} = z(y + a)b — z(ab) = (zy + za)b — (za)b) € =I.
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Hence (y+a)b—ab € (21 : x). In this way, we can show that (zI : z) is
an additive normal subgroup of R. Consequently, (I : ) is an ideal of
R.

(3) First, let e is a right identity of R and g = xt be any element in
G. Then we have the relation that

ge= (xtle=z(te) =at=g

Next, let 7 be any element of R and g be an arbitrary element in G.
Then one gets the following equality that

gler —r) = gler) +g(~r) = (ge)r —gr=gr —gr=0

Thus (er —r) € (0: G) = A(G). Since G is faithful, above this equality
implies that er —r = 0, that is, er = r. Hence e is a two-sided identity
of R.

(4) Suppose that G is Rp-simple and G = GR # 0. Then G has no
R-subgroups except £2 = 0 and G. Let x € G and zR # o. Then since
ZR is an R-subgroup, moreover an Ry-subgroup by Lemma 2.4 (2) of G,
G = zR. Hence G is strongly monogenic. O

3. Some properties on types of primitive near-rings

In chapter 2, we studied some properties of monogenic R-groups,
faithful R-groups and introduced simplicity and R-simplicity concepts
of R-groups.

From now on, we shall introduce several types of R-groups and sev-
eral types of near-rings. Also, we will investigate some properties of
primitivity types of near-rings and their characterizations.

Since 1963, Betsch [2] introduced three primitivity types of near-
rings. However, the research has been concentrated mostly to the zero
symmetric near-rings. As we showed in introduction, in general, near-
rings appear as certain sets of group transformations and zero symmetric
near-rings correspond to sets of zero preserving transformations. There
are lots of interesting transformation near-rings whose elements do not
preserve zero in general, for example, near-rings of affine functions on
modules, near-rings of polynomial functions on groups or rings, near-
rings of continuous functions on topological groups etc.

Let G be a nonzero R-group. Then there are 3 types of R-groups:

(1) G is said to be of type 0 if it is simple and monogenic;
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(2) G is said to be of type 1 if it is simple and strongly monogenic;
(3) G is said to be of type 2 if it is Rp-simple.

In this definitions, the notion of (3) is a generalization of type 2 R-
group in G. Pilz [10] and K. Kaarli [4]. In ring and module theory, the
R-group of type 2 is the same concept of an irreducible ring module.

The previous Lemma 2.1 and Proposition 2.5 implies the following
proposition:

ProOPOSITION 3.1. Let G be an R-group. Then we get the following
conditions:
(1) G is of type 2 implies G is of type 1 implies G is of type 0.
(2) fGisof type 1 or G type 2, then Q =0 or 2 =G.
(3) if G is unitary Rg-group, then G is of type 1 if and only if G is
of type 2.

For example, if G = Z4 = {0,1,2,3}, R:1 := {f € My(G) | 2f =
Oor2}, Ro:={f€ My(G)|2f=0}and Rs := {f € Mo(G) | 3f = 0},
then we get the following:

(1) Ry-group G is of type 0 but not of type 1;
(2) Raz-group G is of type 1 but not of type 2;
(3) Rs-group G is of type 2.

Now we will consider changes of near-rings, for example, an R-group
Gr change into G, for some ideal I of R, Gg, and Gg,. This changes
will be an important tool in later consideration.

LEMMA 3.2 [10]. Let G be an additive group, I be an ideal of a
near-ring R and t € {0,1,2}.

(1) If G is an R-group with I C (o : G), then for all z € G and all
a € R, x(I+a) = za makes G into an R/I-group. Moreover, we
get the following two conditions: If Gr is of type t, then Gy
is of type t. If G is faithful, then Gr/; is also faithful.

(2) IfGis R/I-group, then for allz € G and alla € R, za = z(I+a)
makes G into an R-group in a natural way.

Observe that (R/I)g = {I +a|a € Ro} = Ro/I.

The relation between G and Gpg, is particularly important as fol-
lowing.

ProrosITION 3.3. Let G be an R-group. Then we get the follow-
ings:

(1) Gg is simple if and only if G, is simple.
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(2) If Gg, is monogenic by z, then Gg is monogenic by z.

(3) If Gg, is strongly monogenic, then G is strongly monogenic or
0#£Q#£G.

(4) If G is Ry-simple, then G is R-simple.

Proor. (1) From the Lemma 2.4 (1), since any R-ideal of G is an
Ry-ideal of G, and also the converse is hold, this condition (1) is true.

(2) Suppose that Gg, is monogenic by z. Then G = zRy C zR C G.
Hence G = zR and Gp is monogenic by x.

(3) Suppose that Gg, is strongly monogenic. Then by the condition
(2), Gr is monogenic. Let z € G and assume that o # Q # G is not
true, that is, o = Q or Q2 = G.

i) In case o = Q, we see that

zR=1xz(Ro+ R.) =xzRo+zR. = xRy + Q = zRy

So this is 0 or G, because of Gg, is strongly monogenic.

ii) In case Q = G, we get xR = z(Ry+ R;) = 2Ry+zR, = xRy +§ =
G.

Consequently, from i) and ii), Gg is strongly monogenic.

(4) This condition is clear by the Lemma 2.4 (2). O

We remark that the converse of Proposition 3.3 (4) is not true: For
example, let R = M.(Z;) = {0, 1, 2,3}, where the lower subscript
letter ¢ of n, means constant function into n. Then Ry = {0.}, and
R-group Z, is R-simple but not Ry-simple, since {0, 2} is Ry-subgroup
of Z,.

PROPOSITION 3.4. Let G be an R-group and let t € {0,1,2}.

(1) If Gg is of type t, then G, is of type t or GRy = o.

(2) If Gg, is of type t (for t=1 assume that Q = o or Q = G in GR),
then G is of type t.

Proor. (1) Already we know that G is simple if and only if Gg, is
simple by Proposition 3.3 (1). Let G is monogenic by x. At first, we see
that Rg is a right ideal of R, indeed for any a € Ry, any r, s € R, since
o{(a+7r)s—rs} = (oa+or)s—ors=ors—ors=o, (a+r)s—rs € Ry.
By Proposition 2.19 (1), For this right ideal Ry of R, xRy is an R-ideal
of Gg. Since Gp is simple, xRy = 0 or xRy = G.

i) In case xRy = G, obviously, Gg, is monogenic by z.

ii) In case zRg = o, then G = zR = z(Ro+R.) = zRo+zR; = 0+ =
Q. This implies that for any y € G, yR = G. Again by Proposition 2.19
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(1), for any y € G, yRo = o or yRy = G. Thus in either case, Gp, is
monogenic or GRy = 0. Hence G is of type 0 implies that Gp, is of
type 0 or GRy = o.

Next, If G is of type 1, then Gg is strongly monogenic, so £ = o or
Q=4@G.

In case 2 = o, then since for each z € G,

tR=x(Ry+ R.) =zRo+zR. =zRy+ Q= xR,

Gr, is again of type 1.

In case 2 = G, then each z € G generates Gg by Lemma 2.3 (1)
and (2). So again by Proposition 2.19 (1), for any z € G, zRy = o or
.’ERO =G.

Consequently, in either case, Gg, is either of type 1 or GRy = o.
The assertion for ¢ = 2 is trivial since every Rg-subgroup of G R, 18
Ry-subgroup of Gg.

(2) This condition is proved by using the Proposition 3.3. O

Any right ideal I of a near-ring R is called modular if there exists
e € R such that a —ea € R for all a € R. In this case, we also say that I
is “modular by €” and that e is a left identity modulo I, since for each
a € R, ea =a(mod I).

In all what follows, ¢ will be any number € {0, 1,2} unless otherwise
specified. A right ideal I of R is called t-modular if I is modular and
R/I is an R-group (via (I +a)r = I+ar for any I+a € R/I and r € R)
of type t.

LEMMA 3.5. For any right ideal I of a near-ring R, the following
statements are equivalent:
(1) I is modular.
(2) There exists a monogenic R-group G with generator = such that
I=(o:x).

PROOF. (1) = (2) Suppose I is modular by e. Then G := R/I is
monogenic by I + e =: z. Indeed, since I is modular by e, a — ea € I,
that is, I + a = I + ea, we deduce that

(I+e)R={(I+e)a|lacR}={I+a|lac€ R} =R/I

Moreover,a € (0:z) =(o: I+e)ifandonlyif [+a=I+ea=1+o0
if and only if @ € I. Thus I = (0: z).
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(2) = (1) Suppose that G is a monogenic R-group with generator
z such that I = (o : z). Then there exists an element e € R such that
x = ze. On the other hand, for any a € R, xra = zea, this implies that
z(a — ea) = o, that is, (a — ea) € (0 : ) = I. Therefore I is modular by
e. |

Applying Proposition 2.15 (2) and Lemma 3.5, we get the following
first statement:

PROPOSITION 3.6. Let R be a near-ring and I be a right ideal of R.

(1) IfI is modular, then (I : R) C I.
(2) IfI is modular by e, then (I : R) = (I : eR) which is the largest
ideal of R contained in I.

PRrROOF. (1) By Lemma 3.5, we take a monogenic R-group G := R/I
with generator z such that I = (o: ). Then (I : R) = (o: R/I) = (o:
G)C(o:x)=1.

(2) First, from eR C R we have (I : R) C (I : eR). For converse
inclusion, let » € (I : eR). Then for any a € R, ear C I. On the other
hand, since I is modular by e, ar — ear I for ar € R. Hence for all
a € R, ar € I, that is, Rr C I. Thus r € (I : R). So we proved that
(I:R)=(I:eR).

Next, from the Lemma 2.10 (1) and (3), (I : R) is a two-sided ideal
of R, and from the condition (1), (I : R) C I. If J is a two-sided ideal
of R with J C I, then since J is a left ideal of R,

RJCJCI

This implies that J C (I : R). Therefore (I : R) = (I : eR) is the largest
ideal of R contained in I. O

DEFINITION 3.7. Let R be a near-ring and I be an ideal of R.

(1) R is called t-primitive on G if G is faithful and of type ¢;

(2) R is called t-primitive if there exists an R-group G such that R
is t-primitive on Gg;

(3) I is called t-primitive if R/I is a t-primitive near-ring.

ProPOSITION 3.8. Let I be an ideal of R. Then the following state-
ments are equivalent:

(1) I is t-primitive.
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(2) There exists an R/I-group G such that G is faithful and of type

t.

(3) There exists an R-group G such that I = (o : G) and G is of
type t.

(4) There exists a right ideal J of R such that [ = (J : R) and J is
t-modular.

PROOF. (1) <= (2) By the definition of #-primitive ideal, I is t-
primitive if and only if R/I is a t-primitive near-ring if and only if there
exists an R/I-group G such that R/ is t-primitive on Gr/; if and only
if there exists an R/I-group G such that G is faithful and of type ¢.

(2) < (3) We can prove this condition by defining z(I + a) = za
and the fact G is faithful if and only if I = (0 : G) using the Lemma 3.2
(1) and (2).

(3) = (4) Consider a nonzero monogenic R-group G = zR and
J = (o0 : z). Then by Corollary 2.11 (1), J is a right ideal of R, moreover
this J is modular by Lemma 3.5. Again by Proposition 2.15 (2),

R/J=R/(o:z)2zR=G

Hence J is t-modular. Finally, I = (0: G) = (0o: R/J) = (J : R).
(4) = (3) Assume the condition (4). If we take R/J =: G, since J

is t-primitive, J is modular and G is an R-group of type ¢t and as above
I=(J:R)y=(o:R/J)=(0:G). O

COROLLARY 3.9. For any near-ring R, the following statements are
equivalent:

(1) R is t-primitive.

(2) {o} is a t-primitive ideal of R.

(3) There exists an R-group G such that o = (0 : G) and G is of
type t.

(4) There exists a right ideal J of R such that o = (J : R) and J is
t-modular.

PRrROPOSITION 3.10. Let G be an R-group. If R is simple and G is of
type t, then R is t-primitive on G.

ProOOF. The Corollary 2.11 (2) implies that (o : G) is an ideal of R.
Since R is simple, so (0: G) =0or (0: G) = R.

i) In case (0 : G) = 0, then G is faithful. So we are done.

ii) The case (0 : G) = R does not arise, for if the case (0 : G) = R
arise, then GR = o. Since G is of type t, G # 0 and monogenic with some
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generator x € G, thus 0 # G = R C GR = o. This is a contradiction.
Consequently, R is t-primitive on G. a
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