References
-
P. Ara, Strongly
$\pi$ -regular rings have stable range one, Proc. Amer. Math. Soc. 124 (1996), 3293–3298 - G. F. Birkenmeier, J. Y. Kim and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), no. 3, 213–230
- A. P. Donsig, A. Katavolos and A. Manoussos, The Jacobson radical for analytic crossed products, J. Funct. Anal. 187 (2001), no. 1, 129–141
- J. W. Fisher and R. L. Snider, Rings generated by their units, J. Algebra. 42 (1976), no. 2, 363–368
- N. Jacobson, The radical and semi-simplicity for arbitrary ring, Amer. J. Math. 67 (1945), 300–320
- T. Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math. no. 131, Springer-Verlag, Berlin, Heildelberg, New York, 1991
- H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986
- E. M. Patterson, On the radicals of certain rings of infinite matrices, Proc. Roy. Soc. Edinburgh Sect. A 65 (1960), 263–271
- E. M. Patterson, On the radicals of rings of row-finite matrices, Proc. Roy. Soc. Edinburgh Sect. A 66 (1961/62), 42–46
- M. Prest and J. Schroer, Serial functors, Jacobson radical and representation type, J. Pure Appl. Algebra. 170 (2002), no. 2-3, 295–307
- R. Raphael, Rings which are generated by their units, J. Algebra. 28 (1974), 199–205
- B. Stenstrom, Rings of quotients, Springer-Verlag, 1975
-
A. A. Tuganbaev, Semiregular, weakly regular, and
$\pi$ -regular ring, Algebra, 16. J. Math. Sci. (New York). 109 (2002), no. 3, 1509–1588 - L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funct. Anal. Appl. 5 (1971), 102–110
- A. R. Villena, Automatic continuity in associative and nonassociative context, Irish Math. Soc. Bull. 46 (2001), 43–76
- S. Yassemi, Maximal Elements of Support, Acta Math. Univ. Comenian. 67 (1998), no. 2, 231–236