Clinical Application of I-123 MIBG Cardiac Imaging

I-123 MIBG Cardiac SPECT의 임상적 적응증

  • Kang, Do-Young (School of Nuclear Medicine, College of Medicine, Dong-A University)
  • 강도영 (동아대학교 의과대학 핵의학교실)
  • Published : 2004.10.30

Abstract

Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MIBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with I-123 MIBG imaging nay be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

Keywords

References

  1. Carrio I. Cardiac neurotransmission imaging. J Nucl Med 2001; 42:1062-76
  2. Kim SJ, Lee JD, Lee DY, Park CY, Ham JK, Chung NS, et al. Evaluation of sympathetic innervation in cardiomyopathy with $^{123}I-MIBG$. Korean J Nucl Med 1993;27:195-202
  3. Chung JK. New eye to see sympathetic nervous system of the heart; MIBG myocardial scan. Korean J Nucl Med 1993;27:161-4
  4. Ha JW, Lee JD, Chung N, Jang Y, Cho SH, Kim BS, et al. Assessment of myocardial metaiodobenzylguanidine uptake and its relation to left ventricular systolic and diastolic functional parameters in dilated cardiomyopathy. Yonsei Med J 1999;40: 199-206 https://doi.org/10.3349/ymj.1999.40.3.199
  5. Ha JW, Lee JD, Jang Y, Chung N, Kwan J, Rim SJ, et al. $^{123}I-MIBG$ myocardial scintigraphy as a noninvasive screen for the diagnosis of coronary artery spasm. J Nucl Cardio 1998;5:591-7 https://doi.org/10.1016/S1071-3581(98)90113-1
  6. Choi JY, Lee KH, Hong KP, Kim BT, Seo JD, Lee WR, et al. Iodine-123 MIBG imaging before treatment of heart failure with carvedilol to predict improvement of left ventricular function and exercise capacity. J Nucl Cardiol 2001;8:4-9 https://doi.org/10.1067/mnc.2001.109452
  7. Jeon TJ, Lee JD, Ha JW, Yang WI, Cho SH. Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 MIBG autoradiography and PGP 9.5 immunohistochemistry. Eur J Nucl Med 2000;27:686-93
  8. Kim SJ, Lee JD, Ryu YH, Jeon P, Shim YW, Yoo HS, et al. Evaluation of cardiac sympathetic neuronal integrity in diabetic patients using iodine-123 metaiodobenzylguanidine. Eur J Nucl Med 1996;23:401-6 https://doi.org/10.1007/BF01247368
  9. Patel AD, Iskandrian AE. MIBG imaging. J Nucl Cardiol 2002;9: 75-94 https://doi.org/10.1067/mnc.2002.121471
  10. Somsen GA, Borm JJ, de Milliano PA, van Vlies B, Dubois EA, van Royen EA. Quantitation of myocardial iodine-123 MIBG uptake in SPET studies: a new approach using the left ventricular cavity and a blood sample as a reference. Eur J Nucl Med 1995;22:1149-54 https://doi.org/10.1007/BF00800597
  11. Yamazaki J, Muto H, Ishiguro S, Okamoto K, Hosoi H, Nakano H, et al. Quantitative scintigraphic analysis of 123I-MIBG by polar map in patients with dilated cardiomyopathy. Nucl Med Commun 1997;18:219-29 https://doi.org/10.1097/00006231-199703000-00005
  12. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med 1995;36:969-74
  13. Fagret D, Wolf JE, Comet M. Myocardial uptake of meta- $[^{123}I]$-iodobenzylguanidine $[(^{123}I]-MIBG)$ in patients with myocardial infarct. Eur J Nucl Med 1989;15:624-8
  14. Simula S, Lakka T, Laitinen T, Remes J, Kettunen R, Kuikka J, et al. Cardiac adrenergic denervation in patients with non-Q-wave versus Q-wave myocardial infarction. Eur J Nucl Med 2000;27: 816-21 https://doi.org/10.1007/s002590000278
  15. Kammerling JJ, Green FJ, Watanabe AM, Inoue H, Barber MJ, Henry DP, et al. Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation 1987;76:383-93 https://doi.org/10.1161/01.CIR.76.2.383
  16. Stanton MS, Tuli MM, Radtke NL, Heger JJ, Miles WM, Mock BH, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine. J Am Coll Cardiol 1989;14:1519-26 https://doi.org/10.1016/0735-1097(89)90391-4
  17. Estorch M, Flotats A, Serra-Grima R, Mari C, Prat T, Martin JC, et al. Influence of exercise rehabilitation on myocardial perfusion and sympathetic heart innervation in ischaemic heart disease. Eur J Nucl Med 2000;27:333-9 https://doi.org/10.1007/s002590050042
  18. Hartikainen J, Kuikka J, Mantysaari M, Lansimies E, Pyorala K. Sympathetic reinnervation after acute myocardial infarction. Am J Cardiol 1996;77:5-9 https://doi.org/10.1016/S0002-9149(97)89125-4
  19. Tsutsui H, Ando S, Fukai T, Kuroiwa M, Egashira K, Sasaki M, et al. Detection of angina-provoking coronary stenosis by resting iodine 123 metaiodobenzylguanidine scintigraphy in patients with unstable angina pectoris. Am Heart J 1995;129:708-15 https://doi.org/10.1016/0002-8703(95)90320-8
  20. Sakata K, Yoshida H, Hoshino T, Kurata C. Sympathetic nerve activity in the spasm-induced coronary artery region is associated with disease activity of vasospastic angina. J Am Coll Cardiol 1996;28:460-4 https://doi.org/10.1016/0735-1097(96)00158-1
  21. Ziegler D, Weise F, Langen KJ, Piolot R, Boy C, Hubinger A, et al. Effect of glycaemic control on myocardial sympathetic innervation assessed by $[^{123}I]$metaiodobenzylguanidine scintigraphy: a 4-year prospective study in IDDM patients. Diabetologia 1998; 41:443-51 https://doi.org/10.1007/s001250050928
  22. Vanninen E, Mustonen J, Vainio P, Lansimies E, Uusitupa M. Left ventricular function and dimensions in newly diagnosed non-insulin-dependent diabetes mellitus. Am J Cardiol 1992;70:371-8 https://doi.org/10.1016/0002-9149(92)90622-6
  23. Sivieri R, Veglio M, Chinaglia A, Scaglione P, Cavallo-Perin P. Prevalence of QT prolongation in a type 1 diabetic population and its association with autonomic neuropathy. The Neuropathy Study Group of the Italian Society for the Study of Diabetes. Diabet Med 1993;10:920-4
  24. Wei K, Dorian P, Newman D, Langer A. Association between QT dispersion and autonomic dysfunction in patients with diabetes mellitus. J Am Coll Cardiol 1995;26:859-63 https://doi.org/10.1016/0735-1097(95)00279-8
  25. Koistinen MJ, Airaksinen KE, Huikuri HV, Linnaluoto MM, Heikkila J, Torniainen P, et al. No difference in cardiac innervation of diabetic patients with painful and asymptomatic coronary artery disease. Diabetes Care 1996;19:231-3 https://doi.org/10.2337/diacare.19.3.231
  26. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986;73:615-21 https://doi.org/10.1161/01.CIR.73.4.615
  27. Henderson EB, Kahn JK, Corbett JR, Jansen DE, Pippin JJ, Kulkarni P, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 1988;78:1192-9 https://doi.org/10.1161/01.CIR.78.5.1192
  28. Nakajima K, Bunko H, Taki J, Shimizu M, Muramori A, Hisada K. Quantitative analysis of $^{123}I$-meta-iodobenzylguanidine (MIBG) uptake in hypertrophic cardiomyopathy. Am Heart J 1990;119: 1329-37 https://doi.org/10.1016/S0002-8703(05)80183-8
  29. Rabinovitch MA, Rose CP, Schwab AJ, Fitchett DH, Honos GN, Stewart JA, et al. A method of dynamic analysis of iodine-123-metaiodobenzylguanidine scintigrams in cardiac mechanical overload hypertrophy and failure. J Nucl Med 1993;34:589-600
  30. Toyama T, Aihara Y, Iwasaki T, Hasegawa A, Suzuki T, Nagai R, et al. Cardiac sympathetic activity estimated by 123I-MIBG myocardial imaging in patients with dilated cardiomyopathy after beta-blocker or angiotensin-converting enzyme inhibitor therapy. J Nucl Med 1999;40:217-23
  31. Barr CS, Lang CC, Hanson J, Arnott M, Kennedy N, Struthers AD. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995;76:1259-65 https://doi.org/10.1016/S0002-9149(99)80353-1
  32. Shinohara H, Fukuda N, Soeki T, Sakabe K, Onose Y, Tamura Y. Effects of angiotensin II receptor antagonists on [(123)I] metaiodobenzylguanidine myocardial imaging findings and neurohumoral factors in chronic heart failure. Heart Vessels 2002;17:47-52 https://doi.org/10.1007/s003800200042
  33. Gerson MC, McGuire N, Wagoner LE. Sympathetic nervous system function as measured by I-123 metaiodobenzylguanidine predicts transplant-free survival in heart failure patients with idiopathic dilated cardiomyopathy. J Card Fail 2003;9:384-91 https://doi.org/10.1054/S1071-9164(03)00134-9
  34. Wilson RF, Laxson DD, Christensen BV, McGinn AL, Kubo SH. Regional differences in sympathetic reinnervation after human orthotopic cardiac transplantation. Circulation 1993;88:165-71 https://doi.org/10.1161/01.CIR.88.1.165
  35. Yukinaka M, Nomura M, Ito S, Nakaya Y. Mismatch between myocardial accumulation of 123I-MIBG and 99mTc-MIBI and late ventricular potentials in patients after myocardial infarction: association with the development of ventricular arrhythmias. Am Heart J 1998;136:859-67 https://doi.org/10.1016/S0002-8703(98)70132-2
  36. Schafers M, Lerch H, Wichter T, Rhodes CG, Lammertsma AA, Borggrefe M, et al. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 1998;32:181-6 https://doi.org/10.1016/S0735-1097(98)00213-7
  37. Gill JS, Hunter GJ, Gane J, Ward DE, Camm AJ. Asymmetry of cardiac [123I] meta-iodobenzyl-guanidine scans in patients with ventricular tachycardia and a 'clinically normal' heart. Br Heart J 1993;69:6-13 https://doi.org/10.1136/hrt.69.1.6
  38. Morimoto S, Terada K, Keira N, Satoda M, Inoue K, Tatsukawa H, et al. Investigation of the relationship between regression of hypertensive cardiac hypertrophy and improvement of cardiac sympathetic nervous dysfunction using iodine-123 metaiodo-benzylguanidine myocardial imaging. Eur J Nucl Med 1996;23: 756-61 https://doi.org/10.1007/BF00843703
  39. Lekakis J, Prassopoulos V, Athanassiadis P, Kostamis P, Moulopou-los S. Doxorubicin-induced cardiac neurotoxicity: study with iodine 123-labeled metaiodobenzylguanidine scintigraphy. J Nucl Cardiol 1996;3:37-41 https://doi.org/10.1016/S1071-3581(96)90022-7
  40. Carrio I, Estorch M, Berna L, Lopez-Pousa J, Tabernero J, Torres G. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 1995;36: 2044-9
  41. Druschky A, Hilz MJ, Platsch G, Radespiel-Troger M, Druschky K, Kuwert T, et al. Differentiation of Parkinson's disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J Neurol Sci 2000;175:3-12 https://doi.org/10.1016/S0022-510X(00)00279-3
  42. Takatsu H, Nishida H, Matsuo H, Watanabe S, Nagashima K, Wada H, et al. Cardiac sympathetic denervation from the early stage of Parkinson's disease: clinical and experimental studies with radiolabeled MIBG. J Nucl Med 2000;41:71-7
  43. Yoshita M, Taki J, Yamada M. A clinical role for [(123)I]MIBG myocardial scintigraphy in the distinction between dementia of the Alzheimer's-type and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 2001;71:583-8 https://doi.org/10.1136/jnnp.71.5.583
  44. Delahaye N, Dinanian S, Slama MS, Mzabi H, Samuel D, Adams D, et al. Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability. Eur J Nucl Med 1999;26: 416-24 https://doi.org/10.1007/s002590050406
  45. Fischman AJ. Radionuclide imaging probes for expressed proteins. J Nucl Cardiol 1999;6:438-48 https://doi.org/10.1016/S1071-3581(99)90010-7