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An Efficient Simulation of Discrete Time Queueing Systems with
Markov-modulated Arrival Processes

Kwang-Ho Kook, Sungyeol Kang

Abstract

The cell loss probability required in the ATM network is in the range of 10°~
102, If Monte Carlo simulation is used to analyze the performance of the ATM
node, an enormous amount of computer time is required. To obtain large speed-up
factors, importance sampling may be used. Since the Markov-modulated processes
have been used to model various high-speed network traffic sources, we consider
discrete time single server queueing systems with Markov-modulated arrival
processes which can be used to model an ATM node. We apply importance sampling
based on the Large Deviation Theory for the performance evaluation of,

MMBP/D/1/K, > MMBP/D/1/K, and two stage tandem queueing networks
with Markov-modulated arrival processes and deterministic service times. The
simulation results show that the buffer overflow probabilities obtained by the
importance sampling are very close to those obtained by the Monte Carlo simulation
and the computer time can be reduced drastically.
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1. Introduction

In the high-speed networks, a wide
variety of multimedia services such as
voice, data, video, and image, may be

supported by ATM nodes. When various
sources with different traffic characteristics
enter an ATM node, it is very hard to
evaluate the performance of the ATM node
by an analytical method. Although we can
resort to simulation, it has the disadvantage
of requiring large amount of computer time
to obtain results with a sufficiently small
confidence interval. In ATM networks this
problem is very important since the cell
loss probabilities of interest are extremely

small, less than 10 ~%.

In recent years, importance sampling has
been widely used for the efficient simulation
of rare events in stochastic processes. The
basic idea of importance sampling is to
simulate biased  simulation
distribution which can make the rare events
under consideration occur more frequently

using a

and then weight the simulation data by the
likelihood ratio. The optimal biased
simulation distributions which minimize the
obtained by the
simulation can be derived based on the
Large Deviation Theory (LDT) or on the
Stochastic Gradient Decent (SGD) algorithm.

There have been many works on the fast
simulation based on the LDT. Corttrell,
Fort, and Malgouyres [1] proposed a fast
simulation method based on the LDT and
applied them to estimate the large exit
times of the Aloha protocol. Parekh and
Walrand [2] and Frater, Lennon, and
Anderson [3] made use of the
simulation method based on the LDT to

variance of estimates

quick

estimate the large exit times of the
cumulative backlog process of the Jackson
networks of queues. Sadowsky [4] proposed
an efficient simulation method based on the
LDT to estimate the average time to buffer
stable GI/Gl/m queue.
Parekh [5] made use of the quick simulation
method based on the LDT to estimate tail
probabilities of stationary waiting time in
GI/D/1 and PCP/D/1 queues. Hiedelberger
and Simba [6] considered the problem of
low packet loss

overflow in a

extremely rates In a
voice~data multiplexer, via fast simulation
based on LDP. There have also been works
on the fast simulation based on the SGD.
Devetsikiotis, Al-Qaqg, Freebersyser, and
Townsend (7], [8] proposed an efficient
simulation based on the SGD to estimate
the blocking probability for a queue with
two arrival streams (M-IBP

+MMBBP/D/1/K) and for tandem

networks of M-IBP + MMBBP /Geo /1/K
queues.

Important Sampling has been used to
estimate rare
communication network simulations. Townsend,
Haraszti, Freebersyser, and Devetsikiotis [9]

presented an overview of the important

event probabilities in

sampling applications in communication
networks. Gallardo, Makrakes and Barbosa
[10] proposed a method based on
regenerative Important Sampling in solving
dependent  bursty
broadband telecommunication networks.

long-range traffic in

The Markov-modulated arrival processes
like IBP (Interrupted Bernoulli Process) and
MMBP(Markov Modulated Bernoulli Process)
have been extensively used to model
various broadband traffic sources, such as

voice and video, and the superposed traffic.
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In this paper, we are Interested in the
buffer overflow probabilities in the discrete
time single server queueing systems with
Markov-modulated arrival processes which
can be wused to model ATM node.
Townsend[8] showed that the cell loss
probabilities in the tandem network with
Markov-modulated arrival processes can be
obtained by the SGD. On the other hand,
we apply important sampling based on the
LDT for the performance evaluation of,
MMBP/D/1/K, >MMBP/D/1/K, and
two stage tandem queueing networks with
Markov-modulated arrival processes and
deterministic service times as in [11]. The
results show that the buffer
probabilities obtained by the
importance sampling are very close to those
obtained by the Monte Carlo simulations

simulation
overflow

and the computer time can be reduced
drastically by the importance sampling.

2. Preliminaries

Suppose that we are interested in the
buffer overflow probability of a

Gl/GI/1/K queve. Let A and B

represent interarrival and service time

distribution functions and let M, and M,
be moment generating functions of A and
B 1t follows from [4] that the optimal
biased interarrival and service time
distributions for the importance sampling
can be obtained by the following
exponential change of interarrival and

service time distributions

g, z
dA™(2) = —LHM??)Z

e {4 AlZ2ojd 3

e % %dB(2)
B@="r ey (1)

where 8,=—0" 0,=60" for " satisfying

M= IML6°)=1 (2)

Let N(®) denote the number of jobs in
queue at time ¢ Then the buffer overflow
probability & is the probability that with
N(0)=0, N(t) reaches K before reaching
zero again. We define a cycle as the
duration starting with an empty system and
ending at the instant the system, for the
first time, either becomes empty again or

reaches K. Define
1: N() reaches K during cycle m
0 : otherwise

Then, after #n cycles of simulation under

A", B & can be estimated by

VlLl+ V2L2+ + VnLn
n ,

E:
where L, is given by

e dA(Ak) Ky, dB(B))
L= }1 dA*(A,) kl;[l dB*(B,) . (4)

In 4), A;20 is the

between the arrivals of jobs

interarrival  time
k—1 and &,
B,=0 is the service time of job k—1, K,
is the number of jobs arrived, and K, is

the number of jobs served in the wm th

cycle respectively.
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3. Simulation of Buffer Overflow
Probabilities

3.1 MMBP/D/1/K Queue

a MMBP/D/1/K queue
with two state MMBP arrival process and

We consider
the deterministic service time, 1/x. In
MMBP arrival process, a slot is either in
state 1 or in state 2. A slot in state 1
contains a cell with probability @ and no
cell with probability 1— e, and a slot in
state 2 contains a cell with probability S
and no cell with probability 1— 8. Given
that the slot is in state 1, the next slot is
also in state 1 with probability » and
changes to state 2 with probability (1 — p).

Similarly, given that the slot is in state 2,
the next slot is also in state 2 with
probability ¢ and changes to state 1 with
probability (1— ¢).

Since the moment generating function
M, (—0) of the interarrival time of cells

following MMBP process is given by [12]

ce ¥+ce’
e Y+de +d, , (5

M =0)="
2

where

e=(1—p—l(1—a)(1— B’ +1—p1—a)f]
a=0—-qadpat+(1—pBl+1—pBlaB+a(l-q)]
dy=(1—a) (1= A(p+q— DI —@a+(1—-pA]

d=—[(1—@a+(1—pnBlla(1= B+ p(l—0a)]
dy=01~-ga+(1—p)8,

and the moment generating function

M0 of the constant service time of

1/u slots is
1

My)=e*’ (6)

we can obtain optimal biased interarrival

time distribution by (1) and obtain €&
by (3).

For the purpose of
consider a queue with an MMBP arrival

tllustration, we

process having
a=10.4, f=0.2, p=0.8, ¢=0.8 and with
constant service time of 2.5 slots
(g=04). From (5) and (6), we can
obtain 6'=0.31889 satisfying

According to Eq.(1), the moment
generating  function of the Dbiased

interarrival time distribution becomes

~0.021392¢~ % +0.061954 e °
0.01826de~2+0.09777e ?+0.12 . (7)

M{-0) =

From (5) and (7), we see that the biased
arrival an MMBP
process whose parameters satisfy
¢, =—0.021392, ¢,=0.061954,d,=0.018264,
d,=0.09771, d;=0.12

The optimal biased arrival
MMBP process with
a"=0.63595, 8" =0.44975,
p"=0.83389, ¢"=0.92855, can be obtained
by the stochastic gradient technique of the

process also follows

process,
parameters

Robbins-Monro type which minimizes
Ra*, B, 0%, a")=(c;+0.021392)*
+(c,—0.061954)% + (d, — 0.018264)?
+(d;—0.09777)%+ (dy—0.12)?

obtain the biased
service time distribution which is the same

Similarly, we can
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as the original service time distribution.

Now the buffer overflow probability &
can be estimated by (3) after % cycles of
simulation under biased distributions. Since
the service time is not changed, we can

Carlo simulation and importance sampling
buffer
overflows occur 200 times. We see that &
be estimated

importance sampling and the number of

when simulation was done until

can very accurately by

obtain L, by updating L. in each slot cells generated under the Monte Carlo
based on the state of the biased arrival simulation increases exponentially but the
. . . number of cells generated under the
process during wmth cycle of simulation as . . .
shown in Table 1 importance  sampling  increases  almost
' ) linearly.
Table 2 shows & obtained by the Monte v
Table 1: Computation procedure of the L,
IBP state IBP state I
of previous slot of current slot ”
active, cell arrives L,= L,,}ﬁ:
active, cell doesn’t p(l1—a)
active . L,=L,x— 5
artive p(1—a")
silent L, = mx——ﬂ;%)—
(1—=p")
silent L,=L x4
q
silent active, cell arrives Lm‘“me—G:—%)%
(1—4g"e
active, cell doesn’t I = x -0 -—g
arrive i " (1—gH(1—a")

Table 2: Buffer overflow probabilities of MMBP/D/1/K queue

Monte Carlo Importance Sampling
buffer
e 2=0.4, 8=0.2, a"=0.63595, B*=0.44975,
p=0.8,9= 0.8, 2=0.4 | p*=0.83389, ¢"= 0.92855, " =0.4
K
E[£] # of cells El &] # of cells
3 0.28058 4564 0.27650 624
4 0.12538 15198 0.12516 1325
5 0.05687 39430 0.05161 2047
6 0.02769 88967 0.02670 2850
7 0.00878 207258 0.00994 3901
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32 >MMBP/D/1/K Queue

In this section, we consider discrete time
single server queues with multiple arrival
streams and deterministic service time, 1/x.
As shown in (1), we need the moment
generating function of the superposed arrival
process in apply importance
sampling based on the LDT. Since it is

very hard to get the moment generating

order to

function of the superposed arrival process,
we adopt a heuristic approach to obtain
approximate biased arrival process. If there

are N arrival streams with mean arrival

rates 4i» 1=1,""N  the arrival stream ¢
will be serviced with rate proportional to
their relative arrival rates under the heavy
traffic. So we can derive the approximate

biased interarrival time distribution of the

stream ¢ by considering an imaginary
queue with arrival stream ¢ and
deterministic service time 1/ % i, Where

= pxAf 2/11‘, =1, ,N.

We now consider a queue with multiple
MMBP arrival process and a deterministic
service time 1/u¢. Suppose that 5 MMBP
processes with the same parameter values
(e;=0.4, £=0.2) p=08 ¢:=08 i=1,,5)
arrive to a queue with the constant service

time 0.4 slot (u=2.5).
of each

Since the mean

arrival rate arrival stream is

0.3/slot, under the heavy traffic, the service

rate of stream ¢ will become

e 0.3 _
/11—25 5)(0‘3 0.5

Then as in Section 3.1, we can derive
biased MMBP  arrival with
parameter values

a;=0.78666, 8;=0.65830, »;=0.88009,
4;=0.94781, i=1,--,5

by considering a queue with MMBP
arrival stream having parameters
a’,‘=0.4, ,8,-=0.2, D,-=0.8, qi:0.8 and a

constant service time, 2 slots. The biased
service time for importance sampling is not
changed (¢ =1+ + 15=2.5).

Table 3 shows £ obtained by the Monte
Carlo simulation and importance sampling
when applied to stream 1 only, to stream 1
and 2, to stream 1, 2, and 3, to stream 1, 2,
3, and 4, and to all streams. From Table 3,
we can see that importance sampling gives
very accurate values of buffer overflow
probabilities
subset of the arrival streams.

streams

even though applied to the

3.3 Two Stage Tandem Queueing Network

In this section, we consider a two-stage
tandem queueing network with multiple 2
MMBP arrival
deterministic  service time
Suppose that 5 arrival

state streams and

(Figure 1).
streams following
MMBP processes arrive to the first queue
and there is no external arrivals to the
second queue. When a service completion
occurs at the first queue, we assume that
the cells belonging to stream 1 proceed to
the second queue and the cells belonging to
stream 2, 3, 4, and 5 leave the network.
Then the arrival
queue becomes the departure

stream 1 at the first queue.

process to the second
process of
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Table 3: Buffer overflow probabilities of i;MMBP/D/l/K queue

Importance Sampling
Monte Carlo (stream 1) .
Buffer Importance Sampling
Size 2=0.4, 8= 0-2_’ 2" =0.78666, 8~ =0.65830 (streaml, stream?)
x| 208 e= 0.8, #=2.5| »*=0.88009, ¢" =0.9478
©'=2.5
E[ £] # of cells E[£] # of cells E[£] # of cells
3 0.53879 2707 0.52737 2540 0.52189 2185
4 0.28902 7906 0.27604 6391 0.27125 4805
5 0.10557 22070 0.10453 17501 0.10341 10613
6 0.03700 91811 0.03729 45389 0.03482 21156
7 0.01217 177980 0.00871 61532 0.01081 40088
. Importance Sampling .
Buffer Importance Sampling (stream]  stream2 Importance Sampling
Size |(streaml, stream2, stream3) ’ - (all streams)
stream3, stream4)
K
E[&] # of cells E[£&] # of cells E[&] # of cells
3 052187 2183 0.52615 2081 0.50367 2036
4 0.29015 4558 0.28320 3746 0.28105 3389
5 0.11726 3368 0.11324 6621 0.11612 5622
6 0.03961 14077 0.03257 10090 0.03313 8209
7 0.00866 20501 - 0.01032 13770 0.01072 10890
Since the departure process of m queue can be approximated by the 2 state
-MMBP/Geo /1/K queue with m-state MMBP. process. A process can be
MMBP arrival process and geometric approximated by a 2-state MMBP process

service time can be approximated by the m
-MMBP process [13], we assume that the
departure process of stream 1 from the first

MMBP stream 1

if we know the average number of cells per

slot, p, the squared coefficient of variation

of the interarrival time, c¢?, the lag 1

O

Stream 1
1 ) {

(2

5 ™~
P

MMBP stream 5

.

Figure 1. Two-stage tandem queueing network
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autocorrelation for the interarrival time and

the number of arrivals in each slot,
#(1), #(1) [12], [13]. In order to
approximate the arrival process to the

second queue by a 2 state MMBP process,
¢(1), ¢(1) of the
departure process of the stream 1 from the
first queue have the same values as those
of the external stream 1 and

estimate o and c¢? by applying the QNA
(The ¢(1) value of the
process m-MMBP/Geo

J/1/K queue is very close to that of the
process [13].) After the
process to the second queue has been
approximated by 2-state MMBP process, we
can obtain biased arrival process to the

we assume that

arrival

technique [14].

departure from

arrival arrival

second queue as in Section 3.1.
For the purpose of an illustration, suppose

that stream 1, ... , stream 5 follow the same
MMBP processes with parameters
e=0.4, 5=0.2, p=0.8, ¢=0.8, the
service time of the first queue is

deterministic 0.5 slot, and the service time
of the second queue is deterministic 2.5

slots. We can obtain

0=0.3, c*=0.89, ¢(1)=0.01715, &(1)=0.02857
for the arrival process to the second queue
by the above procedure. From these, we can
approximate the process to the
second queue by the 2-state MMBP process
with parameters a=0.42524, 8=10.22601,
p=10.77839, ¢=10.86908.
obtain the biased arrival process to the
second queue, a MMBP process with

a"=0.51881, 8" =0.32126,
p"=0.97886, ¢"=0.91004.

Table 4 shows & in the second queue
obtained by simulating the whole tandem
queueing network by the Monte Carlo
simulation, by simulating the second gqueue
in isolation by the Monte Carlo simulation,
and by simulating the second in isolation

arrival

Then we can

parameters

queue by importance sampling. From Table
6, we can observe that about 20% of
relative error occurs by assuming that the
departure process follows MMBP process
with the same ¢(1), #(1) values as those
of the external arrival process. This error
may be reduced by approximating departure
processes more accurately.

Table 4: Buffer overflow probabilities of two-stage tandem dqueueing network

Monte Carlo Monte Carlo Importance Sampling
bufter | (aueueing network) (second queue) (second queue)
size a=0.4,8=0.2,p=0.8 a=10.42524, £=10.22601, a:=0.51881, B:=O.32126,
K ¢=0.8, 4,=80, u,=0.4 »=0.717839, ¢ =_(_).86908, p*=0.97866, ¢*=0.91004,
pn=0.4 p#=0.4
E[£] # of cells E[£] # of cells E[£] # of cells
3 0.28090 4819 0.30257 4318 0.29243 769
4 0.12516 15322 0.13004 14627 0.14420 1649
5 0.05346 36417 0.06614 35126 0.06629 2500
6 0.02480 89830 0.02969 87531 0.02912 3506
7 0.01167 209257 0.01344 203780 0.01316 4557
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4. Conclusion

In this paper we have illustrated the
applicability of the importance sampling to
the performance studies of the ATM node
which can be modeled as a discrete time
queueing system with Markov-modulated
arrival processes. The results show that we
can obtain large speed-up factors by the
sampling. When voice, data,
video, and image services are supported by

importance

the ATM node simultaneously, it is very
hard to apply importance sampling because
of the difficulties in obtaining the moment
generating function of the superposed arrival
process. Since the importance sampling even
when applied to the subset of the arrival
streams gives very accurate results as
shown in Section 3.2, we may be able to
apply importance sampling only to the
traffic sources following Markov-modulated
arrival processes by the proposed heuristic
method.

On the other hand, the biased arrival
distributions obtained by our heuristic
approach can be improved by applying
Stochastic Gradient Descent algorithm to
minimize the variance of the estimates
obtained by the importance sampling. This
will be able to reduce much effort in
biased arrival
based on the SGD by providing good initial
starting values of the parameters. In order
to apply importance sampling for the
performance studies of the networks of
queues, further studies are necessary for the
departure processes from each queue in the
network.

finding optimal distribution
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