DOI QR코드

DOI QR Code

클러스터링 기법을 이용한 3상 유도전동기 구동시스템의 고장진단

Fault Diagnosis of 3 Phase Induction Motor Drive System Using Clustering

  • 박장환 (충주대학교 정보제어공학과) ;
  • 김승석 (충주대학교 정보제어공학과) ;
  • 이대종 (충주대학교 정보제어공학과) ;
  • 전명근 (충주대학교 정보제어공학과)
  • 발행 : 2004.11.01

초록

산업 응용분야에서 유도전동기 구동시스템의 예상치 않은 고장은 전체 계통의 정지, 막대한 손실 등을 가져올 수 있다. 이러한 문제점을 해결하는 방법 중에 하나로서 본 논문은 유도전동기 구동을 위한3상 전압형 PWM 인버터에 개방-스위치 손상의 고장진단에 대하여 연구한다. 고장진단 방법으로는, 먼저 고장의 특징추출을 위하여 3상 전류를 d-q 전류로 변환한 후 평균 전류벡터를 구한다. 다음으로 여러 종류의 고장 패턴을 진단하기 위하여 한 인공지능 알고리즘을 제안한다. 제안된 기법은 일반적인 뉴로-퍼지 시스템(adaptive neuro-fuzzy algorithm)의 전제 부에 클러스터링을 도입한 기법으로 적은 계산 양과 좋은 성능을 갖는다. 최종적으로, 여러 불확실한 요소를 가진 고장계통에 대하여 제안된 알고리즘의 유용성을 모의실험에 의해 검증하였다.

In many industrial applications, an unexpected fault of induction motor drive systems can cause serious troubles such as downtime of the overall system heavy loss, and etc. As one of methods to solve such problems, this paper investigates the fault diagnosis for open-switch damages in a voltage-fed PWM inverter for induction motor drive. For the feature extraction of a fault we transform the current signals to the d-q axis and calculate mean current vectors. And then, for diagnosis of different fault patterns, we propose a clustering based diagnosis algorithm The proposed diagnostic technique is a modified ANFIS(Adaptive Neuro-Fuzzy Inference System) which uses a clustering method on the premise of general ANFIS's. Therefore, it has a small calculation and good performance. Finally, we implement the method for the diagnosis module of the inverter with MATLAB and show its usefulness.

키워드

참고문헌

  1. A.G. Eason, R.L. Ribeiro, C.B. Jacobina, E.R.C. Silva, and A.M.N. Lima, Fault detection of open-switch damage in voltage-fed PWM motor drive systems, Power Electronics, lEEE: Transections, vol. 18, pp. 587-593, March 2003
  2. Z. Ye, and B. Wu, Simulation of electrical faults of three phase induction motor drive system Power Electronics Specialists Conference, 2001, vol. 1, pp. 75-80, june 2001
  3. P.J. Chrzan, and R. Szczesny, Fault diagnosis of Voltage-fed inverter for induction motor drive, ISIE '96., Proceedings of the IEEE International Symposium, vol. 2, vol. 2, pp. 1011-1016, june 1996 https://doi.org/10.1109/ISIE.1996.551083
  4. J. Klima. Analytical investigation of an induction motor drive under inverter fault mode operations, Electric Power Applications, lEE Proceedings, vol. 150, pp. 255-262, May 2003
  5. R. Peuget, S. Coortine and J.P. Rognon, Fault Detection and Isolation on a PWM Inverter by Knowledge-Based Model, IEEE Transections. on Industry Applications, vol. 34, no.6, Nov/Dec 1998
  6. Sung-Suk Kim, Keun-Chang Kwak, Jeong-Woong Ryu, Myung-Ceun Chun, A Neuro-Fuzzy Modeling using the Hierarchical Oustering and Gaussian Mixture ModeI, KFIS, vol. 13, no. 5, pp. 512-519, 2003
  7. Sung-Suk Kim, Keun-Chang Kwak, jeong-Woong Ryu, Myung-Ceun Chun, A Neuro-Fuzzy System Modeling using Gaussian Mixture ModeI and Clustering Method, KFIS, vol. 12, no. 6, pp. 571-578, 2002
  8. J. S. R. ANRS: Adaptive Network-based Fuzzy Inference System, Jang, IEEE trans. on System, Man, and Cybemetics, vol. 23, no. 3, pp. 665-685, 1993
  9. J-S. R. Jang, C.T. Sun,. E. Mizutani, Neuro- Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, 1997
  10. R. R. Yager, D. P. Filev, Generation of Fuzzy Rules by Mountain Clustering, Journal of Intelligent and Fuzzy System, vol. 2, pp. 209-219, 1994