GOODNESS-OF-FIT TEST USING LOCAL MAXIMUM LIKELIHOOD POLYNOMIAL ESTIMATOR FOR SPARSE MULTINOMIAL DATA

  • Baek, Jang-Sun (Department of Statistics, Chonnam National University)
  • Published : 2004.09.01

Abstract

We consider the problem of testing cell probabilities in sparse multinomial data. Aerts et al. (2000) presented T=${{\Sigma}_{i=1}}^{k}{[{p_i}^{*}-E{(p_{i}}^{*})]^2$ as a test statistic with the local least square polynomial estimator ${{p}_{i}}^{*}$, and derived its asymptotic distribution. The local least square estimator may produce negative estimates for cell probabilities. The local maximum likelihood polynomial estimator ${{\hat{p}}_{i}}$, however, guarantees positive estimates for cell probabilities and has the same asymptotic performance as the local least square estimator (Baek and Park, 2003). When there are cell probabilities with relatively much different sizes, the same contribution of the difference between the estimator and the hypothetical probability at each cell in their test statistic would not be proper to measure the total goodness-of-fit. We consider a Pearson type of goodness-of-fit test statistic, $T_1={{\Sigma}_{i=1}}^{k}{[{p_i}^{*}-E{(p_{i}}^{*})]^2/p_{i}$ instead, and show it follows an asymptotic normal distribution. Also we investigate the asymptotic normality of $T_2={{\Sigma}_{i=1}}^{k}{[{p_i}^{*}-E{(p_{i}}^{*})]^2/p_{i}$ where the minimum expected cell frequency is very small.

Keywords

References

  1. AERTS, M. A., AUGUSTYNS, I. AND JANSSEN P. (1997). 'Smoothing sparse multinomial data using local polynomial fitting', Nonparameteric Statistics, 8, 127-147 https://doi.org/10.1080/10485259708832717
  2. AERTS, M. A., AUGUSTYNS, I. AND JANSSEN P. (2000). 'Central limit theorem for the total squared error of local polynomial estimators of cell probabilities', Journal of Statistical Planning and Inference, 91, 181-193 https://doi.org/10.1016/S0378-3758(00)00177-4
  3. BAEK, J. (1998). 'A local linear kernel estimator for sparse multinomial data', Journal of the Korean Statistical Society, 27, 515-529
  4. BAEK, J. AND PARK, J. (2003). 'On the asymptotic properties of a local maximum likelihood polynomial estimator for sparse multinomial probabilities', submitted
  5. BURMAN, P. (1987a). 'Smoothing sparse contingency tables', Sankhya, A49, 24-36
  6. BURMAN, P. (1987b). 'Central limit theorem for quadratic forms for sparse tables', Jonrnal of Multivariate Analysis, 22, 258-277 https://doi.org/10.1016/0047-259X(87)90090-X
  7. HALL, P. AND TITTERINGTON, D. M. (1987). 'On smoothing sparse multinomial data', The Australian Journal of Statistics, 29, 19-37 https://doi.org/10.1111/j.1467-842X.1987.tb00717.x
  8. KENDALL, M. AND STUART, A. (1979). The Advanced Theory of Statistics 2, 4th ed., Charles Griffin & Company, London
  9. SIMONOFF, J. S. (1983). 'A penalty function approach to smoothing large sparse contingency tables', The Annals of Statistics, 11, 208-218 https://doi.org/10.1214/aos/1176346071
  10. SIMONOFF, J. S. (1985). 'An improved goodness-of-fit statistic for sparse multinomials', Journal of the American Statistical Association, 80, 671-677 https://doi.org/10.2307/2288483
  11. SIMONOFF, J. S. (1996). Smoothing Methods in Statistics, Springer, New York