The Sorption Properties of Cs on the Surface of Artificially Weathered Illite

인위적으로 풍화시킨 일라이트 표면의 Cs 흡착 특성

  • Published : 2004.09.01

Abstract

Illite has been known to adsorb Cs preferentially to other alkali cations, especially at lower Cs concentration due to the frayed edge site. This frayed edge site was only verified by isotherm experiments, but not by other analytical methods. To investigate the Cs sorption properties on the surface of illite, artificially weathered illite with increasing frayed edge sites was reacted with Cs at different solution concentrations. The illite was weathered f3r 1 hour, 2 days, 14 days in 0.001 M HCl solution. With increasing reaction time, increasing amount of K in solution was observed, indicating formation of frayed edges by weathering, which was also verified by XRD, SEM, and TEM analysis. Original and weathered illites were converted to the homoionic Na form and reacted with $10^{-3}$ / ~ $10^{-7}$ M CsCl solutions for 24 hour. The aspect of Cs sorption was clearly distinguished around $10^{-5}$ M Cs concentration. The relative Cs amount sorbed on illite at low concentration (<10$^{-5}$ M) was higher than high concentration and increased with decreasing Cs concentration. In general, the amount of sorbed Cs increases with increasing weathering time and this trend is more noticeable at lower concentration while not much differentiated with weathering time at high concentration. These results indicate that the selective Cs sorption site exists in illite at low concentration, known as frayed edge site, and the number of those sites increases with weathering time.

일라이트는 닳은 모서리(frayed edge)의 존재에 의하여 다른 알칼리 금속과 비교할 때 낮은 농도에서 선택적으로 Cs을 더 잘 흡수하는 것으로 알려져 있다. 이 닳은 모서리는 기존의 일반적인 흡착실헐에 의하여 존재한다고 알려져 있지만 다른 분석방법으로는 증명되지 않은 상태이다. 일라이트 표면에서의 Cs의 흡착특성을 알아보기 위하여 닳은 모서리를 증가시킨 인위적으로 풍화된 일라이트와 Cs을 여곤 농도에서 반응을 시켰다. 일라이트는 0.001 M의 HC1 용액에서 1시간, 2일, 14일 동안 반응시켜 K 이온의 방출 및 XRD, SEM, TEM 등으로 풍화상태를 확인하였다. 풍화되지 않은 일라이트와 풍화된 일라이트를 Na-일라이트로 교환한 후 $10^{-3}$$10^{-7}$ M 농도의 CsCl 용액에서 24시간 반응시켰다. Cs의 흡착특성은 $10^{ -5}$M Cs 용액농도를 기준으로 뚜렷한 차이를 보이다. 일라이트에 흡착된 Cs은 낮은 Cs 농도 (<$10^{-5}$ M )에서 높은 Cs 농도보다 상대적으로 많은 Cs이 흡착되었으며 이러한 상대적 흡착 농도는 용액의 농도가 낮아질수록 높아진다. 일반적으로 흡착된 Cs는 풍과가 오래된 시료일수록 낯은 농도에서 뚜렷하나 높은 농도에서는 그 차이가 적다. 이러한 결과는 낮은 농도에서 닳은 모서리라고 불리는 흡착자리의 존재에 의한 것이고 이러한 자리는 풍화가 진행됨에 따라서 증가된다.

Keywords

References

  1. Alberts J.J. and Wahlgren M.A. (1981) Concentrations of $^{239,240}Pu$, $^{137}Cs$, and $^{90}Sr$ in the waters of the Laurentian Great Lakers. Comparison of 1973 and 1976. Environ. Sci. Technol., 15, 94-98.
  2. Beasley T.M. and Jennings C.D. (1984) Inventories of $^{293,240}Pu$, $^{241}Am$, $^{137}Cs$, and $^{60}Co$ in Columbia River sediments from Hanford to the Columbia River estuary. Environ. Sci. Technol., 18, 207-212.
  3. Bolt G.H., Sumner M.E., and Kamphorst A. (1963) A Study of the Equilibria Between Tree Categories of Potassium in an Illite Soil. Soil Sci Soc. Proc., 27, 294-299.
  4. Bradbury M.H. and Baeyens B. (2000) A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J. Contaminant Hydrology, 42, 141-163.
  5. Brouwer E., Baeyens B., Maes A., and Cremers A. (1983) Cesium and Rubidium Ion Equilibria in Illite Clay. J. Phys. Chem., 87, 1213-1219.
  6. Chittenden D.M., II (1983) Factors affecting the soluble-suspended distribution of strontium-90 and cesium-137 in Dardanelle Reservoir, Arkansas. Environ. Sci. Technol., 17, 26-31.
  7. Cremers A., Elsen A., de Peters P., and Maes A. (1988) Quantitative analysis of radiocesium retention in soils. Nature, 335, 247-249.
  8. Eberl D.D. (1980) Alkali cation selectivity and fixation by clay minerals. Clays Clay Minerals, 28, 161-172.
  9. Evans D.W., Alberts J.J. and Clark R.A. III (1983) Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim. Cosmochim. Acta, 47, 1041-1049.
  10. Francis C.W. and Brinkley F.S. (1976) Preferential adsorption of $^{137}Cs$ to micaceous minerals in contaminated freshwater sediment. Nature, 260, 511- 513.
  11. Jackson M.L. (1963) Interlayering of expansible layer silicates in soils by chemical weathering. Clays Clay Minerals, 11, 29-46.
  12. Kim S.J., Kim Y., Noh. J.H. (1990) Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula.: (1) 'Napseok' Deposits in Yangsan Area. J. Miner. Soc. Korea, 3, 44-57.
  13. Kim Y., Kirkpatrick R.J., and Cygan R.T. (1996) $^{133}Cs$ NMR study of cesium on the surfaces of kaolinite and illite. Geochim. Cosmochim. Act, 60, 4059-4074.
  14. Maiti T.C., Smith M.R., and Laul J.C. (1989) Colloid formation study of U, Th, Ra, Pb, Po, Sr, Rb, and Cs in briny (high ioinic strength) groundwaters: Analog study for waste disposal. Nuclear Technol., 84, 82-87.
  15. Poinssot C., Baeyens B. and Bradbury M.H. (1999) Experimental and modelling studies of caesium sorption on illite. Geochim. Cosmochim. Acta, 63, 3217-3227.
  16. Rich C.I. (1964) Effect of cation size and pH on potassium exchange in Nason soil. Soil Sci., 97, 384-390.
  17. Santschi P.H., Bollhalder S., Zingg S., Luck A., and Farrenkothen K. (1990) The self-cleaning capacity of surface waters after radioactive fallout. Evidence from European Waters after Chernobyl, 1986-1988. Environ. Sci. Technol., 24, 519-527.
  18. Sawhney B.L. (1970) Potassium and Cesium Ion selectivity in relation to clay mineral structure. Clays Clay Minerals, 18. 47-52.
  19. Sawhney B.L. (1972) Selectivity sorption and fixation of cations by clay minerals: A Review. Clays Clay Minerals, 20, 93-100.
  20. Srodon J., and Eberl D.D. (1984) Illite. In Micas(ed. Bailey S. W.); Rev. Mineral, 13, 495-544.
  21. Wendling L.A, Harsh, J.B., Palmer, C.D., Hamilton, M.A., and Flury, M. (2004) Cesium sorption to illite as affected by oxalate. Clays and Clay Minerals, 52, 375-381.