무선 랜 모뎀용 저전력 FFT/IFFT프로세서 설계

Low-power FFT/IFFT Processor for Wireless LAN Modem

  • 신경욱 (금오공과대학교 전자공학부 VLSI 설계 연구실)
  • 발행 : 2004.11.01

초록

OFDM (Orthogonal Frequency Division Multiplexing) 기반의 무선 랜 모뎀에 사용되는 고속/저전력 64-점 FFT/IFFT 프로세서 코어를 설계하였다. Radix-2/4/8 DIF (Decimation-In-Frequency) FFT 알고리듬을 R2SDF (Radix-2 Single-path Delay Feedback) 구조에 적용하여 설계하였으며, 내부 데이터 흐름 특성에 대한 분석을 토대로 데이터 패스의 불필요한 switching activity를 제거함으로써 전력소모를 최소화하였다. 회로 레벨에서는 내부의 상수 곱셈기와 복소수 곱셈기를 절사형(truncated) 구조로 설계하여 칩 면적과 전력소모가 감소되도록 하였다. Verilog-HDL로 설계된 64점 FFT/IFFT 코어는 0.25-$\mu\textrm{m}$ CMOS 셀 라이브러리로 합성한 결과, 약 28,100 게이트로 합성되었으며, 추출된 게이트 레벨 netlist와 SDF를 이용한 타이밍 시뮬레이션 결과, 50-MHz@2.5-V로 안전하게 동작하는 것으로 검증되어 64점 FFT/IFFT 연산에 1.3-${\mu}\textrm{s}$가 소요될 것으로 예상된다. 설계된 코어를 FPGA에 구현하여 다양한 테스트 벡터로 동작시킨 결과 정상 동작함을 확인하였으며, 50-dB 이상의 신호대잡음비(SNR) 성능과 50-MHz@2.5-V 동작조건에서 약 69.3-mW의 평균 전력모소를 나타내었다.

A low-power 64-point FFT/IFFT processor core is designed, which is an essential block in OFDM-based wireless LAM modems. The radix-2/418 DIF (Decimation-ln-Frequency) FFT algorithm is implemented using R2SDF (Radix-2 Single-path Delay Feedback) structure. Some design techniques for low-power implementation are considered from algorithm level to circuit level. Based on the analysis on infernal data flow, some unnecessary switching activities have been eliminated to minimize power dissipation. In circuit level, constant multipliers and complex-number multiplier in data-path are designed using truncation structure to reduce gate counts and power dissipation. The 64-point FFT/IFFT core designed in Verilog-HDL has about 28,100 gates, and timing simulation results using gate-level netlist with extracted SDF data show that it can safely operate up to 50-MHz@2.5-V, resulting that a 64-point FFT/IFFT can be computed every 1.3-${\mu}\textrm{s}$. The functionality of the core was fully verified by FPGA implementation using various test vectors. The average SQNR of over 50-dB is achieved, and the average power consumption is about 69.3-mW with 50-MHz@2.5-V.

키워드

참고문헌

  1. 조용수, 무선 멀티미디어 통신을 위한 OFDM기초, 대영사, 2001
  2. IEEE 802.11a/D7.0, 'Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High speed physical layer in the 5GHz band', ISO/IEC 802-11: 1999/Amd 1:2000(E), 1999
  3. N. Weste and D.J. Skellem, 'VLSI for OFDM', IEEE Communications Magazine, vol. 36, pp. 127-131, Oct, 1998
  4. P. Duhamel and H. Hollman, 'Split radix FFT algorithm', Electronic Lett., vol. 20, no. 1, pp. 14-16, Jan., 1984 https://doi.org/10.1049/el:19840012
  5. L. Jia, Y. Gao, J. Isoaho and H. Tenhunen, 'A new VLSI-oriented FFT algorithm and implementation', Proceedings of 1998 IEEE International ASIC Conference, pp. 337-341, 1998
  6. S. He and M. Torkelson, 'Designing pipeline FFT processor for OFDM (de)modu1ation', Proceedings of IEEE URSI International Symposium on Signals, Systems and Electronics, pp. 257-262, 1998
  7. Y.J. Hongil and J. Kim, 'New efficient FFT algorithm and pipeline implementation results for OFDM/DMT applications', IEEE Trans. on Consumer Electronics, vol. 49, no. 1, pp. 14-20, Feb., 2003 https://doi.org/10.1109/TCE.2003.1205450
  8. K. Maharatna, E. Grass and U. Jagdhold, 'A novel 64-potnt FFT/IFFT processor for IEEE 802. lla standard', Proceedings of ICASSP 2003, pp. II.321-324, 2003
  9. W.C. Yeh and C.W. Jen, 'High-speed and low-power split-radix FFT', IEEE Trans. on Signal Processing, vol. 51, no. 3, pp. 864-874, Mar., 2003 https://doi.org/10.1109/TSP.2002.806904
  10. J.W. Cooley and J.W. Tukey, 'An algorithm for the machine calculadon of complex Fourier series', Math. Comput., vol. 5, no. 5, pp. 87-109, 1965
  11. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley, 1985