Verification of AGB (alpha-glucosidase biosynthesis) Bacterial Bioassay of Metal Toxicity and Inhibition Effect of Fulvic Acid (EA)

박테리아(E. Coli)의 AGB (alpha-glucosidase biosynthesis)를 이용한 중금속의 독성시험과 풀빅산에 의한 독성 억제효과

  • 김재현 (동덕여자대학교 자연과학대학 보건관리학과) ;
  • 김명길 (경기도 보건환경연구원) ;
  • 엄애선 (한양대학교 생활과학대학 식품영양학과)
  • Published : 2004.03.01

Abstract

Aim of the present study was the development of a bioassay which enables the detection of toxic effects of heavy metal ions to a bacterium, Escherichia coli. Inhibition effects of the metals on growth rates of the bacterium were studied in the absence or presence of fulvic acid. This method does not clearly differentiate among metals, but does detect overall AGB inhibition rate (toxicity) for 5 different heavy metals. The toxicity of the metals in the absence of fulvic acid in the same testing conditions was significantly increased in following order: Hg < Pb, Zn < Cd < Cu, whereas the inhibition rate (toxicity) in the presence of FA was shown to be increased In following order: Cd < Pb, Hg < Cu < Zn. The results of the present study indicate that this simple and fast biomonitoring assay with direct exposure of E coli. might be a valuable supplement to analytical methods of contaminated media.

Keywords

References

  1. Apartin C and Ronco A. Development of a free beta-galac-tosidase in vitro test for the assessment of heavy metal toxicity, Environ. Toxicol. 2001; 16(2): 117-120 https://doi.org/10.1002/tox.1014
  2. Arulgnanendran VR and Nirmalakhandan N. Microbial toxi-city in soil medium, Ecotoxicol. Environ. Saf. 1998; 39(1): 48-56 https://doi.org/10.1006/eesa.1997.1609
  3. Bitton G and Koopman B. Bacterial and enzymatic bioas-says for toxicity testing in the environment, Rev. Envi-ron. Contam. Toxicol. 1992; 125: 1-22 https://doi.org/10.1007/978-1-4612-2890-5_1
  4. Bitton G, Jung K and Koopman B. Evaluation of a micro-plate assay specific for heavy metal toxicity, Arch. Envi-ron. Contam. Toxicol. 1994; 27(1): 25-28
  5. Boularbah A, Bitton G and Morel JL. Assessment of metal content and toxicity of leachates from teapots, Sci. Total Environ. 1999; 16; 227(1): 69-72
  6. Campbell CD, Hird M, Lumsdon DG and Meeussen JC. The effect of EDTA and fulvic acid on Cd, Zn, and Cu toxi-city to a bioluminescent construct (pUCD607) of Esche-richia coli. Chemosphere 2000; 40(3): 319-325 https://doi.org/10.1016/S0045-6535(99)00302-1
  7. Christi I, Milne CJ, Kinniburgh DG and Kretzschmar R. Relating ion binding by fulvic and humic acids to chem-ical composition and molecular size. 2. Metal binding, Environ. Sci. Technol. 2001; 15; 35(12): 2512-2517
  8. Durrieu C and Tran-Minh C. Optical algal biosensor using alkaline phosphatase for determination of heavy metals, Ecotoxicol. Environ. Saf. 2002; 51(3): 206-209 https://doi.org/10.1006/eesa.2001.2140
  9. Dutton RJ, Bitton G, Koopman B and Agami O. Effect of environmental toxicants on enzyme biosynthesis: a com-parison of beta-galactosidase, alpha-glucosidase and tryptophanase, Arch. Environ. Contam. Toxicol. 1990; 19(3): 395-398 https://doi.org/10.1007/BF01054984
  10. Franklin NM, Adams MS, Stauber JL and Lim RP. Devel opment of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytom-etry, Arch. Environ. Contam. Toxicol. 2001: 40(4): 469 -480 https://doi.org/10.1007/s002440010199
  11. Gamila HA and Naglaa FA. Estimation of the hazard con-centration of industrial wastewaters using algal bioassay, Bull. Environ. Contam. Toxicol. 1999; 63(3): 407-414 https://doi.org/10.1007/PL00002975
  12. Gondar D, Fiol S, L$\acute{o}$pez R, Mar$\acute{i}$a A, Ramos A, Antelo JM and Arce F. Determination of intrinsic complexation parameters for Cu$Cu^2^+$ and a soil fulvic acid by ion selec-tive electrode, Chem. Spec. Bioavail. 2000; 12(3): 89-96 https://doi.org/10.3184/095422900782775508
  13. Kogut MB and Voelker BM. Strong copper-binding behavior of terrestrial humic substances in seawater, Environ. Sci. Technol. 2001; 15;35(6): 1149-1156
  14. Kong IC, Bitton G, Koopman B and Jung KH. Heavy metal toxicity testing in environmental samples, Rev. Environ. Contam. Toxicol. 1995; 142: 119-147 https://doi.org/10.1007/978-1-4612-4252-9_5
  15. Long D, Campbell MG and Graham L. Toxicity screening of environmental samples utilizing a bacterial bioassay, Proceedings of the 2001 Conference on Environmental Research. 2001; 129-135
  16. Mallick N, Singh AK and Rai LC. Impact of bimetallic combinations of Cu, Ni and Fe on growth rate, uptake of nitrate and ammonium, $^1^4CO_2$ fixation, nitrate reductase and urease activity of Chlorella vulgaris, Biol. Met. 1990; 2(4): 223-228 https://doi.org/10.1007/BF01141364
  17. Montuelle B, Latour X, Volat B and Gounot AM. Toxicity of heavy metals to bacteria in sediments, Bull. Environ. Contam. Toxicol. 1994; 53(5): 753-758
  18. Nalecz-Jawecki G, Rudz B and Sawicki J. Evaluation of toxicity of medical devices using Spirotox and Microtox tests: I. Toxicity of selected toxicants in various diluents, J. Biomed. Mater Res. 1997; 35(1): 101-105 https://doi.org/10.1002/(SICI)1097-4636(199704)35:1<101::AID-JBM10>3.0.CO;2-M
  19. Peterson SM and Stauber JL. New algal enzyme bioassay for the rapid assessment of aquatic toxicity, Bull. Envi-ron. Contam. Toxicol. 1996; 56(5): 750-757 https://doi.org/10.1007/s001289900110
  20. Rai PK, Mallick N and Rai LC. Effect of Cu and Ni on growth, mineral uptake, Photosynthesis and enzyme activities of Chlorella vulgaris at different pH values, Biomed. Environ. Sci. 1994; 7(1): 56-67
  21. Yan T, Teo LH and Sin YM. Effects of metals on alpha amylase activity in the digestive gland of the green mussel, Perna viridis L., Bull. Environ. Contam. Toxicol 1996; 56(4): 677-682 https://doi.org/10.1007/s001289900099