Acute Toxicity of Dissolved Inorganic Metals, Organotins and Polycyclic Aromatic Hydrocarbons to Puffer Fish, Takifugu obscurus

황복(Takifugu obscurus)에 대한 중금속, 유기주석화합물 및 다환방향족탄화수소(PAHs)의 급성 독성

  • 이정석 (㈜네오엔비즈 부설 환경안전연구소) ;
  • 이규태 (㈜네오엔비즈 부설 환경안전연구소) ;
  • 김동훈 (㈜네오엔비즈 부설 환경안전연구소) ;
  • 김진형 (인하대학교 해양과학과) ;
  • 한경남 (인하대학교 해양과학과)
  • Published : 2004.06.01

Abstract

We exposed juvenile puffer fish, Takifugu obscurus(30 days after hatching) to various aqueous pollutants including 4 kinds of inorganic metals (Ag, Cd, Cu and Hg), 2 organotin compound.; (tributyltin [TBT] and triphenyltin[TPhT]) and 5 polycyclic aromatic hydrocarbon (PAH) compounds (chrysene, fluoranthene, naphthalene, phenanthrene and pyrene) to estimate median lethal concentrations (LC50s) of each pollutant after the 96-hour acute exposure. Among the inorganic metals, Hg (52 $\mu\textrm{g}$/L; 96-h LC50) was most toxic to test animals and followed by Ag (164 $\mu\textrm{g}$/L), Cu (440 $\mu\textrm{g}$/L) and Cd (1180 $\mu\textrm{g}$/L). Aqueous TBT was more toxic between the two organotins; the 96-h LC50 for TBT (5.1 $\mu\textrm{g}$/L) was 3 times lower than that of TPhT (17.3 $\mu\textrm{g}$/L). The acute toxicity of PAH compounds was highest for chrysene (1.5 $\mu\textrm{g}$/L; 96-h LC50) and decreased in the order of pyrene (65 $\mu\textrm{g}$/L) > fluoranthene (158 $\mu\textrm{g}$/L) > phenanthrene (432 $\mu\textrm{g}$/L) > naphthalene (8690 $\mu\textrm{g}$/L). The toxicity of PAH compounds wat closely related to their physico-chemical characteristics such as $K_{ow}$ and water solubility, and well explained by simple QSAR relationship. The sensitivity of puffer fish to various inorganic and organic pollutants was generally comparable to various fish species widely used as standard test species in previous studies and further evaluation should be conducted to develop adequate testing procedure for T. obscurus when used in various toxicity tests.

Keywords

References

  1. 강주찬, 환운기, 지정훈, 김성길, 김재원. 넙치, Paralichthys ofivaceus 치어의 생존, 성장 및 산소소비에 미치는 수은의 만성적 독성, 한국어병학회지 2002; 15: 37-42
  2. 김형수, 김흥윤, 진 평. 넙치, Paratichthys otivaceus 자어의 생존과 성장에 미치는 암모니아의 영향, 한국수산학회지 1997; 30: 488-495
  3. 박 훈, 한경남, 김형선. 황복 Takifugu ohscurus 자치어를 이용한 침출수 단기독성 연구, 한국해양학회지 바다 1999; 4: 298-304
  4. 이성규, 심점순, 김용화, 노정구. 어류, Daphnia 및 조류와 Ames' Test를 이용한 산업폐수의 환경독성 및 유전 독성 평가, 한국물환경학회 1991; 7: 100-109
  5. 최문술, Kinae N. Micropollutants가 연안 생물에 미치는 독성효과에 관한 연구. I. 어류에 미치는 독성, 한국수산학회지 1994; 27: 529-534
  6. 탁건태, 김중균. 넙치 생존과 성장에 미치는 TBT의 독성, 한국수산학회지 2001; 34: 103-108
  7. Alabaster JS. Survival of Fish in 164 Herbicides, Insecticides, Fungicides, Wetting Agents and Miscellaneous Sub-stances, Int.Pest Control 1969; 11 (2): 29-35
  8. ASTM. Standard guide for conducting bioconcentration tests with fishes and saltwater bivalve mollusks (E 1002-94). American society for Testing and Materials, Philadelphia, USA, 1994
  9. ASTM. Standard Guide for Selection of Resident Species as Test Organisms for Aquatic and Sediment Toxicity Tests (E1850-97). American society for Testing and Materials. Philadelphia, USA, 1997
  10. Becker E. Ableitung von Qualitatszielen zum Schutz Oberirdischer Binnengewasser fur Organozinnver-bindungen: Dibutylzinnverbindungen, Tetrabutylzinn, Tributylzinnverbindungen, Triphenylzinnverbindungen. Umweltbundesamt, Entwurf fur den BLAK QZ, Stand 1992; 26 (3)
  11. Bryan GW, Gibbs PE, Hummerstone LG and Burt GR. The decline of the gastropod Nucella lapillus around South West England: Evi-dence for the effect of tributyltin from antifouling paints, J. Mar. Biol. Ass. UK 1986; 66: 611-640 https://doi.org/10.1017/S0025315400042247
  12. Buhl KJ and Hamilton SJ. Relative Sensitivity of Early Life Stages of Arctic Grayling, Coho Salmon, and Rainbow Trout to Nine Inorganics, EcotoxicoI.Environ.Saf. 1991; 22: 184-197 https://doi.org/10.1016/0147-6513(91)90058-W
  13. Calamari D and Marchetti R. The Toxicity of Mixtures of Metals and Surfactants to Rainbow Trout, Water Res. 1973; 7 (10): 1453-1464 https://doi.org/10.1016/0043-1354(73)90118-8
  14. Cardin JA. Results of Acute Toxicity Tests Conducted with Copper at ERL, Narragansett U.S.EPA, Narragansett, RI. 1985
  15. Clark RB. Marine Pollution. Fifth Edition, Oxford University Press, New York, 2001; 230 pp
  16. Cusimano RF, Brakke DF and Chapman GA. Effects of pH on the Toxicities of Cadmium, Copper, and Zinc to Steelhead Trout (Salmo gairdneri), Can. J. Fish. Aquat. Sci. 1986; 43(8): 1497-1503 https://doi.org/10.1139/f86-187
  17. DeGraeve GM, Elder RG, Woods DC and Bergman HL. Effects of Naphthalene and Benzene on Fathead Minnows and Rainbow Trout, Arch. Environ. Contam. Toxicol. 1982; 11(4): 487-490 https://doi.org/10.1007/BF01056076
  18. Di Toro DM, McGrath JA and Hansen DJ. Technical basis for narcotic chemicals and polycyclic aromatic hydro-carbon criteria. I. Water and tissue. Environ. Toxicol. Chem. 2000: 19: 1951-1970 https://doi.org/10.1897/1551-5028(2000)019<1951:TBFNCA>2.3.CO;2
  19. Escher BI and Hermens JLM. Modes of action in ecotoxi-cology: Their role in body burdens, species sensitivity, QSARs, and mixture effects, Environ. Sci. Technol. 2002; 36: 4201-4217 https://doi.org/10.1021/es015848h
  20. Ferguson EA and Hogstrand C. Acute Silver Toxicity to Seawater-Acclimated Rainbow Trout: Influence of Salinity on Toxicity and Silver Speciation, Environ. Toxicol. Chem. 1998; 17(4): 589-593 https://doi.org/10.1897/1551-5028(1998)017<0589:ASTTSA>2.3.CO;2
  21. Geiger DL, Brooke LT and Call DJ. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas). Center for Lake Superior Environmental Stud., Univ.of Wisconsin-Superior, Superior, WI 1990; 5, I:332
  22. Hogstrand C, Galvez F and Wood CM. Toxicity, Silver Accumulation and Metallothionein Induction in Fresh-water Rainbow Trout During Exposure to Different Silver Salts, Environ. Toxicol. Chem. 1996; 15(7): 1102-1108 https://doi.org/10.1897/1551-5028(1996)015<1102:TSAAMI>2.3.CO;2
  23. Hunziker RW, Escher BI and Schwarzenbach RP. Acute toxicity of triorganotin compounds: Different specific effects on the energy metabolism and role of pH, Environ. Toxicol. Chem. 2002: 21: 1191 -1197 https://doi.org/10.1897/1551-5028(2002)021<1191:ATOTCD>2.0.CO;2
  24. Irwin RJ, VanMouwerik M, Stevens L, Seese M.D, and Basham W. Environmental Contaminants Encyclopedia. National Park Service, Water Resources Division, Fort Collins, Colorado. 1998
  25. Kang SG, David A, Wright and Koh CH. Baseline metal concentration in the Asian periwinkle Littorina brevicula employed as a biomonitor to assess metal pollution in Korean coastal water, Sci. Total Environ. 2000; 263 (1-3, 18): 143-153 https://doi.org/10.1016/S0048-9697(00)00695-1
  26. Koh CH, Kim GB, Maruya KA, Anderson JW, Jones JM and Kang SG Kang. Induction of the P450 reporter gene system bioassay by polycyclic aromatic hydrocarbons in Ulsan Bay (South Korea) sediments, Environ. Pollut. 2001; 111 (3): 437-445 https://doi.org/10.1016/S0269-7491(00)00087-7
  27. Koh CH, Kim GB, Maruya KA, Anderson JW, Jones JM and Kang SG. Induction of the P450 reporter gene system bioassay by polycyclic aromatic hydrocarbons in Ulsan Bay (South Korea) sediments, Environ. Pollut. 2001; 111(3): 437-445 https://doi.org/10.1016/S0269-7491(00)00087-7
  28. Lee KT, Tanabe S and Koh CH. Distribution of organochlo-rine pesticides in sediments from Kyeonggi Bay and nearby areas, Korea. Environ. Pollut. 2001a; 114: 207-213 https://doi.org/10.1016/S0269-7491(00)00217-7
  29. Lee JH, Landrum PF, Field LJ and Koh C-H Application of a spolycyclic aromatic hydrocarbon model and a Logistic regression model to sediment toxicity data based on a Species-specific, water-only 1c50 toxic unit for Hyalella azteca, Environ. Toxicol. Chem. 2001b; 20: 2102-2113 https://doi.org/10.1897/1551-5028(2001)020<2102:AOAPAH>2.0.CO;2
  30. Lee KW, Kang HS and Lee SH. Trace elements in the Korean coastal environment, Sci. Total Environ. 1998; 214: 11-19 https://doi.org/10.1016/S0048-9697(98)00051-5
  31. Martin RC, Dixon DG, Maguire RJ, Hodson PV and Tkacz RJ. Acute Toxicity, Uptake, Depuration and Tissue Distribution of Tri-n-Butyltin in Rainbow Trout, Salmo gairdneri Aquat. Toxicol. 1989; 15(1): 37-52 https://doi.org/10.1016/0166-445X(89)90004-0
  32. Nebeker AV, McAuliffe CK, Mshar R and Stevens DG Toxicity of Silver to Steelhead and Rainbow Trout, Fathead Minnows and Daphnia magna, Environ. Toxicol. Chem. 1993; 2: 95-104 https://doi.org/10.1897/1552-8618(1983)2[95:TOSTSA]2.0.CO;2
  33. Pascoe D, Evans SA and Woodworth J. Heavy Metal Toxicity to Fish and the Influence of Water Hardness, Arch. Environ. Contam. Toxicol. 1986; 15 (5): 481-487 https://doi.org/10.1007/BF01056559
  34. Phillips DJH. Quantitative aquatic biological indicators: their use to monitor trace metal and organochlorine pollution, Applied Science Publishers Ltd., London. 1980
  35. Pickering QH, Brungs W and Gast M. Effect of Exposure Time and Copper Concentration on Reproduction of the Fathead Minnow (Pimephales promelas), Water Res. 1977: 11(12): 1079-1083 https://doi.org/10.1016/0043-1354(77)90008-2
  36. Rainbow PS, Phillips DJH and Depledge MH. The signifi-cance of trace metal concentrations in marine inverte-brates: a need for laboratory investigation of accumula-tion strategies, Mar. Pollut. Bull. 1990; 21: 321-324 https://doi.org/10.1016/0025-326X(90)90791-6
  37. Roberts MHJ, Warinner JE, Tsai CF, Wright D and Cronin LE. Compahson of Estuarine Species Sensitivities to Three Toxicants Arch. Environ. Contam. Toxicol 1982; 11(6): 681-692 https://doi.org/10.1007/BF01059155
  38. Sherman RE, Gloss SP and Lion LW. A Comparison of Toxicity Tests Conducted in the Laboratory and in Experimental Ponds Using Cadmium and the Fathead Minnow (Pimenhales promelas), Water Res. 1987; 21 (3): 317-323 https://doi.org/10.1016/0043-1354(87)90211-9
  39. Shim WJ, Kahng SH, Hong SH, Kim NS, Kim SK and Shim JH. Imposex in the rock shell, Thais ctavigera, as evidence of organotin contamination in the marine environment of Korea, Mar. Environ. Res. 2000; 49 (5); 435-451 https://doi.org/10.1016/S0141-1136(99)00084-7
  40. Snarski VM and Olson GF. Chronic Toxicity and Bioaccu-mutation of Mercuric Chloride in the Fathead Minnow (Pimephales promelas), Aqaat. Toxicol. 1982; 2: 143-156 https://doi.org/10.1016/0166-445X(82)90012-1
  41. Spehar RL, Poucher S, Brooke LT, Hansen DJ, Champlin D and Cox DA. Comparative Toxicity of Fluoranthene to Freshwater and Saltwater Species Under Fluorescent and Ultraviolet Light Arch, Environ. Contam. Toxicol. 1999; 37(4): 496-502 https://doi.org/10.1007/s002449900544
  42. Suedel BC, Deaver E and Rodgers Jr JH. ExperimentalFactors that may Affect Toxicity of Aqueous and Sediment-Bound Copper to Freshwater Organisms, Arch, Environ. Contam. Toxicol. 1996: 30(1): 40-46 https://doi.org/10.1007/BF00211327
  43. US Environmental Protection Agency. Technical support document water quality based toxic control. EPA/505/2-90-001. Washington DC, USA. 1991