Abstract
With the five-day workweek system in bank and the increased usage of ATM(Automatic Toller Machine), it is required that the financial crime using stolen credit card should be prevented. Though a CCTV camera is usually installed in near ATM, an intelligent criminal can cheat it disguising himself with sunglass or mask. In this paper, we propose facial feature verification system which can detect whether the user's face can be Identified or not, using image processing algorithm and SVM(Support Vector Machine). Experimental results show that FAR(Error Rate for accepting a disguised man as a non-disguised one) is 1% and FRR(Error Rate for rejecting a normal/non-disguised man as a disguised one) is 2% for training data. In addition, it shows the FAR of 2.5% and the FRR of 1.43% for test data.
금융권의 주 5일제 근무에 따른 무인 현금 인출기의 사용 확대와 함께, 타인의 신용카드를 이용하여 무인 현금 인출기에서 돈을 인출하는 금융 범죄에 대한 원천적인 예방 대책이 필수적으로 요구되고 있다. 특히 무인 현금 인출기 부근에는 감시용 CCTV Camera가 설치되어 있으나, 지능적인 범죄자들은 이러한 사실을 인식하고 선글라스, 마스크 등을 착용하여 이러한 감시 시스템을 피해가고 있다 본 논문에서는 이러한 문제점을 해결하기 위하여 무인 현금 인출기에 설치되어 있는 카메라를 통해 입력된 사용자의 얼굴 및 얼굴 특징점을 영상 신호처리 방법과 SVM(Support Vector Machine)으로 분석하여 향후 얼굴이 식별 가능한 경우에만 금융 거래를 할 수 있도록 하는 시스템을 개발하였다. 실험결과, 학습 데이터에 대해서는 약 1%의 오 인식율과 2%의 오 거부율을 나타냈으며, Test 데이터에 대해서는 약 2.5%의 오 인식율과 1.43%의 오 거부율을 나타냈다.