Physiological and Molecular Characterization of NAD(P)H-Nitroreductase from Stenotrophomonas sp. OK-5

Stenotrophomonas sp. OK-5에서 분리한 NAD(P)H-Nitroreductase의 생리학적 및 분자생학적 특성 연구

  • 호은미 (순천향대학교 자연과학대학 생명과학부) ;
  • 강형일 (순천대학교 사범대학 환경교육과) ;
  • 오계현 (순천향대학교 자연과학대학 생명과학부)
  • Published : 2004.09.01

Abstract

Stenotrophomonas sp. OK-5 capable of degrading TNT has been found to have three nitroreductase fractions designated as NTR fractions I, II, and III. NTR in a previous study. This study was attempted to reveal physiological and molecular characteristics of NTR fractions I, II, and III in strain OK-5. Several chemicals (e.g., EDTA, NaCl, dithiothreitol, $\beta$-mercaptoethanol) were tested for their effect on enzyme activity of NTRs, demonstrating that enzyme activities of NTR fractions I, II, and III from OK-5 were inhibited in the presence of $\beta$-mercaptoethanol. Substrate specificity test showed that NTR fractions I, II, and III all have over 70% enzyme activities for nitrobenzene or RDX as a substrate. N-terminal amino acid sequence of NTR fraction I from Stenotrophomonas sp. OK-5 was $^1MSDLLNADAVVQLFRTARDS^20$ and exhibited 70% sequence homology with that of NTR from Xanthomonas campestris. NTR I gene from Stenotrophomonas sp. OK-5 (SmOK5nrI) shared extensive sequence homology in deduced amino acid sequence of PCR product with NTRs from Xanthomonas campestris (81 %), X. axonopodis (75%), Streptomyces avermitilis(30%), whereas they had low homology with that from P. putida KT2440 (pnrB) (16%).

TNT 분해 세균 Stenotrophomonas sp. OK-5는 세 개의 다른 NAD(P)H-nitroreductase의 활성 fractions (NTR fractions I, II, III)을 갖고 있는 것으로 확인된 바 있다. 본 연구에서는 NTR fractions I, II, III에 대한 생리학적 특성과 분자생물학적 특성을 규명하고자 하였다. TNT에 대한 균주 OK-5의 NTR fractions I, II, 그리고 III의 활성은 억제 물질인 $\beta$-mercaptoethanol의 첨가 시에 효소의 활성 이 모두 억제되는 것으로 확인되었다. TNT와 그 유사 기질을 이용하여 균주 OK-5에서 분리된 NTR의 기질 특이성을 조사한 결과, nitrobenzene, 그리고 RDX에 대 해서는 비교적 활성 이 높게 나타났으나 2,6-DNT와 2,4-DNT에서는 낮은 활성을 나타내는 것으로 확인되었다. 균주 OK-5에서 정제된 NTR fraction I의 N-말단 아미노산 서 열은 $^1MSDLLNADAVVQLFRTARDS^20$로 분석되었고, Xanthomonas campestris의 NTR과 X. axonopodis의 NTR에서 각각 70%와 65%로 비교적 높은 유사성을 가지는 것으로 나타났다. 균주 OK-5의 NTR fraction I의 효소를 암호화하는 SmOK5nrI 유전자의 염기서열을 확인하고 분석된 유전자로부터 유추되는 아미노산 서열을 각각 비교한 결과 X. campestris의 NTR과 81%, X. axonopodis의 NTR과 75%,그리고 Streptomyces avermitilis의 NTR과 30%의 유사성이 있는 것으로 조사되었으나, Pseudomonas putida KT2440의 NTR (pnrB)과는 16%로 낮은 유사성이 있는 것으로 확인되었다.

Keywords

References

  1. Alexander, M. 1981. Biodegradation of chemical environmental concern. Science 211, 132-138
  2. Blehert, D.S., K.L. Knoke, B.G. Fox, and G.H. Chambliss. 1997. Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species. J. Bacteriol. 179, 6912-6920 https://doi.org/10.1128/jb.179.22.6912-6920.1997
  3. Bollag, D.M., M.D. Rozycki, and S.J. Edelstein. 1996. Protein method. 2nd ed., Wiley-Liss, Inc., New York, NY, USA
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254
  5. Brunmark, A., E. Cadenas, A.J. Segura, C. Lind, and L. Ernster. 1988. DT-diaphorase catalyzed two-electron reduction of various p-benzoquinone- and 1,4-naphthoquinone epoxides. Free Radic. Biol. Med. 5, 133-143
  6. Bryant, C., and M. DeLuca. 1991. Purification and characterization of an oxygen-insensitive NAD(P)H-nitroreductase from Enterobacter cloacae. J. Biol. Chem. 266, 4123-4130
  7. Bryant, C., L. Hubbard, and W.D. McElroy. 1991. Cloning, nucleotide sequence, and expression of nitroreductase gene from Enterobacter cloacae. J. Biol. Chem. 266, 4126-4130
  8. Burns-Nagel, D., O. Drzyzga, K. Steinbach, T.C. Schmidt, E. von Löw, T. Gorontzy, K. H. Blotevogel, and D. Gemsa. 1998. Anaerobic/ aerobic composting of 2,4,6-trinitrotoluene-contaminated soil in a reactor system. Environ. Sci. Technol. 32, 1676-1679
  9. French, C.E., S. Nicklin, and N.C. Bruce. 1998. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl. Environ. Microbiol. 64, 2864-2868
  10. Funk, S.B., D.J. Roberts, D.L. Crawford, and R.L. Crawford. 1993. Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol. 59, 2171-2177
  11. Gorontzy, T., O. Drzyzga, M.W. Kahl, D. Bruns-Nagel, J. Breitung, E. von Loew, and K.H. Blotevogel. 1994. Microbial degradation of explosives and related compounds. Crit. Rev. Microbiol. 20, 265-284
  12. Hecht, H.J., H. Erdmann, H.J. Park, M. Sprinzl, and R.D. Schmid. 1995. Crystal structure of NADH oxidase from Thermus thermophilus. Nat. Struct. Biol. 2, 1109-1114
  13. Ho, E.M., J.W. Chun, H.Y. Kahng, and K.H. Oh. 2003. Characterization of NAD(P)H-nitroreductase purified from the TNTdegrading bacterium, Stenotrophomonas sp. OK-5. Kor. J. Microbiol. 39, 223-229.
  14. Kobori, T., H. Sasaki, W.C. Lee, S. Zenno, K. Saigo, M.E. Murphy, and M. Tanikura. 2001. Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds alteration of pyridine nucleotide binding by a single amino acid substitution. J. Biol. Chem. 276, 2816-2823
  15. Koder, R.L., and A.-F. Miller. 1998. Overexpression, isotopic labeling, and spectral characterization of Enterobacter cloacae nitroreductase. Protein Expression & Purification 13, 53-60
  16. McFarlan, S. 2000. 2,4,6-Trinitrotoluene metabolism pathway map. University of Minnesota biocatalysis/biodegradation data-base
  17. Nivinskas, H., R.L. Koder, Z. Anusevièius, J. Šarlauskas, A.-F. Miller, and N. Èenas. 2000. Two-electron reduction of nitroaromatic compounds by Enterobacter cloacae NAD(P)H nitroreductase: description of quantitative structure-activity relationships. Biochem. Pol. Acta 47, 941-949.
  18. Nivinskas, H., R.L. Koder, Z. Anusevièius, J. Šarlauskas, A.-F. Miller, and N. Èenas. 2001. Quantitative structure-activity relationships in two-electron reduction of nitroaromatic compounds by Enterobacter cloacae NAD(P)H:nitroreductase. Arch. Biochem. Biophys. 385, 170-178
  19. Nokhbeh, M.R., S. Boroumandi, N. Pokorny, P. Koziarz, E.S. Paterson, and I. B. Lambert. 2002. Identification and characterization of SnrA, an inducible oxygen-insensitive nitroreductase in Salmonella enterica serovar typhimurium TA1535. Mutat. Res. 508, 59-70 https://doi.org/10.1016/S0027-5107(02)00174-4
  20. Oh, B. T., G. Sarath, P.J. Shea, R.A. Drijber, and S.D. Comfort. 2000. Rapid spectrophotometric determination of 2,4,6-trinitrotoluene in a Pseudomonas enzyme assay. J. Microbiol. Methods 42, 149-158
  21. Riefler, R.G., and B.F. Smets. 2000. Enzymatic reduction of 2,4,6- trinitrotoluene and related nitroarenes: kinetics linked to one-electron redox potentials. Environ. Sci. Technol. 34, 3900-3906
  22. Riefler, R.G., and B.F. Smets. 2002. NAD(P)H:Flavin mononucleotide oxidoreductase inactivation during 2,4,6-trinitrotoluene reduction. Appl. Environ. Microbiol. 68, 1690-1696
  23. Spain, J.C. 1995. Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49, 523-555
  24. Wang, C.-J., S. Thiele, and J.-M. Bollag. 2002. Interaction of 2,4,6-trinitrotoluene (TNT) and 4-amino-2,6-dinitrotoluene with humic monomers in the presence of oxidative enzymes. Arch. Environ. Contam. Toxicol. 42, 1-8
  25. Watanabe, M., M. Ishidate, Jr., and T. Nohmi. 1990. Nucleotide sequence of Salmonella typhimurium nitroreductase gene. Nucleic Acids Res. 18, 1059
  26. Whiteway, J., P. Koziarz, J. Veall, N. Sandhu, P. Kumar, B. Hoecher, and I. B. Lambert. 1998. Oxygen-insensitive nitroreductase: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J. Bacteriol. 180, 5529-5539