유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring

  • 발행 : 2004.09.01

초록

TEX농도의 지속적인 감소 및 비오염지역에 비해 오염지역에서 용존산소(DO), 질산염(NO$^{3-}$ ), 황산염(SO$_4$$^{2-}$ )농도의 뚜렷한 감소와 2가철($Fe^{2+}$)농도의 증가, 산화환원전위의 현저한 저하, pH중성 등의 지화학적 인자의 분포특성으로 미루어 보아 대상부지는 혐기성 상태에서 토착미생물에 의한 오염물질의 생분해가 이루어지고 있는 것으로 판단되며, 또한 이와 함께 투수성이 큰 현장부지의 지질학적 특성상 강우에 의한 지하수의 재유입으로 인한 희석 및 분산도 TEX농도의 감소에 부수적인 요인이 되었을 것으로 추정된다. 한편, 연구대상부지에서의 생분해능(EAC)은 9.04∼35.85 mg/L범위에 있으며, 평균 24.73 mg/L이었다. 그리고 연구대상부지에서 생분해에 가장 큰 영향을 주는 생분해과정으로는 황산염환원으로 기여도가 약 75%정도인 것으로 나타났으며, 다음으로는 질산염환원 그리고 산화철(3가철)환원의 순으로 나타났다. 연구대상부지의 생분해능(EAC)를 기초로 년간 분해할 수 있는 TEX의 양을 계산해 보면 121∼45.3kg/year이며, 이 값은 년간 TEX의 지하수 부하량의 약 80%정도에 해당하는 것이다. 현장부지에서의 계산된 전체 자연저감율은 0.0017∼0.0224day$^{-1}$(평균 0.0110day$^{-1}$)이며, 1차 생분해율은 0.0008∼0.0106day$^{-1}$(평균 0.0051day$^{-1}$)이었다. 1차 생분해율에 근거한 연구대상부지에서 TEX의 반감기는 866.25∼65.38일(2.37∼0.18 years)로 계산되었다.

Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

키워드

참고문헌

  1. Wiedemeier, T.H., Wilson, J.T., Kampbell, D.H., Miller, R.N., and Hansen, J. Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater, Volume I & 2, Air Force Center for Environmental Excellence, Technology Transfer Division, Brooks AFB, San Antonio, Texas (1995)
  2. Cho, J.S., Wilson, J.T., DiGiulio, D.C., Vardy, J.A., and Choi, W.H. 'Implementation of natural attenuation at a JP-4 jet fuel release after active remediation', Biodegradation, 8, pp. 265-273 (1997) https://doi.org/10.1023/A:1008212127604
  3. Farr, A.M., Houghtalen, R.J., and McWhorter, D.B. 'Volume estimation of light nonaqueous phase liquids in porous medi', Ground Water, 28(1), pp. 48-56 (1990) https://doi.org/10.1111/j.1745-6584.1990.tb02228.x
  4. Reddi, L.N., Wei Han, Banks, M.K., 'Mass loss from pools under fluctuation water table conditions', J. Environ. Eng., 124(12), pp. 1171-1177 (1998) https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1171)
  5. Fetter, C.W. Contaminant Hydrogeology, MacMillan, New York, New York (1993)
  6. Borden, R.C., Gomez, C.A., Becker, M.T., 'Geochemical indicators of intrinsic bioremediation', Ground Water, 33, pp. 180-189 (1995) https://doi.org/10.1111/j.1745-6584.1995.tb00272.x
  7. Seagren, E.A, Rittmann, B.E., and Valocchi, A.J., 'Quantitative evaluation of the enhancement of NAPL-pool dissolution by flushing and biodegradation', Environ. Sci. Technol, 28(5), pp. 833-839.(1994) https://doi.org/10.1021/es00054a014
  8. Alexander, M. 'Biodegradation of chemicals of environmental concern' Science, 211(9), pp132-138(1981)
  9. Lee, J.Y., Cheon, J.Y., Lee, K.K., Lee, M.H., and Yun, J.K., 'A study on tracer transport in a shallow porous aquifer', Journal of the Geological Society of Korea, 37(2), pp. 309-316 (2001)
  10. Lee,J.Y., Hydrogeological investigation and attenuation characteristics for a petroleum contaminated site, Thesis for A Ph.D. degree, school of earth and environmental sciences, Seoul National University (2001)
  11. Cozzarelli, I.M., Herman,J.S., and Baedecker, M.J., 'Fate of microbial metabolites of hydrocarbons in a Coastal Plain aquifer; the role of electron acceptors', Environ. Sci. Technl., 29, pp. 459-469 (1995)
  12. Postgate, J.R., The sulfate-reducing bacteria. Cambridge University Press, New York (1984)
  13. Christensen, T.H., Bjerg, P.L., Banart, S.A., Jakobsen, R, Heron, G., and Albrechtsen, H., 'Characterization of redox conditions in groundwater contaminant plumes', J. Contam. Hydro., 45, pp. 165-241 (2000) https://doi.org/10.1016/S0169-7722(00)00109-1
  14. Bjerg, P.L., Rugge, K., Pedersen, J.K., and Christensen, T.H., 'Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill(Grindsted, Denmark)', Environ. Sci. Technol., 29(5), pp.1387-1394 (1995) https://doi.org/10.1021/es00005a035
  15. Newell, C.J., McLeod, R.K., and Gonzeles, J.R., Bioscreen: Natural attenuation decision support system, Version 1.4. prepared for the Air Force Center For Environmental Excellence, Brooks AFB, Texas (1997)
  16. Air Force Center for Environmental Excellence(AFCEE). Natural attenuation of fuel hydrocarbons performance and cost results from multiple air force demonstration sites. Parsons Engineering Science, Inc (1999)
  17. Lee, C.H., Lee, J.Y., Cheon, J.Y., and Lee, K.K., 'Attenuation of petroleum hydrocarbons in smear zones: Case study', J. Environ. Eng., 127(7), pp. 639-647 (2001) https://doi.org/10.1061/(ASCE)0733-9372(2001)127:7(639)
  18. Rugge, K., Bjerg, P.L., and Chritensen, T.R., 'Distribution of organic compounds from municipal solid waste in the groundwater downgradient of a landfill(Grindsted, Denmark)', Environ. Sci. Technl., 29(5), pp. 1935-1400 (1995)
  19. Cozzarelli, I.M., Herman, J.S., Baedecker, M.J., and Fischer, J.M., 'Geochemical heterogeniety of a gasoline-contaminated aquifer', J. Contam. Hydro., 40, pp. 261-284 (1999) https://doi.org/10.1016/S0169-7722(99)00050-9
  20. Montgomery, R.H., Loftis, J.C., and Harris, J., 'Statistical characteristics of ground-water quality variables', Ground Water, 25(2), pp 176-184(1987) https://doi.org/10.1111/j.1745-6584.1987.tb02874.x
  21. Buscheck, T.E., and Alcantar, C.M., Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In, Proceedings of the 1995 Battelle International Conference on In-Situ and On Site Bioreclamation, April 1995
  22. Schirmer, M., Durrant, G.C., Molson, J.W., and Frind, E.O., 'Influence of transient flow on contaminant biodegradation', Ground Water, 39(2), pp. 276-282 (2001) https://doi.org/10.1111/j.1745-6584.2001.tb02309.x
  23. Yun, J.K., Application and evaluation of monitored natural attenuation at a petroleum hydrocarbon contaminated site, Thesis for A Ph.D. degree, College of Life and Environmental Sciences, Konkuk University (2003)