Nitrosation of U.S. E.P.A. Classified Eleven Priority Pollutant Phenols

미환경청 분류 11종 상위 환경오염 페놀들의 나이트로소화

  • Chung, Yongsoon (Department of Chemistry, Chungbuk National University) ;
  • Lee, Seonghoon (Department of Chemistry, Chungbuk National University) ;
  • Motomizu, Shoji (Department of Chemistry, Faculty of Science, Okayama University)
  • Received : 2004.07.10
  • Accepted : 2004.08.21
  • Published : 2004.10.25

Abstract

Nitrosation of phenol (POH) was studied by adding hydrochloric acid and sodium nitrite to phenol solution with reaction temperature and time change. The optimum condition of nitrosation was found from the effects of hydrochloric acid and sodium nitrite concentration, reaction temperature, and reaction time changes on the production of nitrosophenol (POHNO). As a result, it was found that the optimum conditions were $5.0{\times}10^{-4}{\sim}2.0{\times}10^{-3}M$ range of $NO{_2}^-$ concentration, more than 0.10 M of HCl concentration, temperature of $80^{\circ}C$, and 3 hrs. of reaction time. In this condition, 10 U.S. E.P.A. classified priority environmental pollutant, phenols, were nitrosated. Nitrosated phenols were: POH, 2-Chlorophenol (2ClPOH), 2,4-diChlorophenol (2ClPOH), 2,4-dimethylphenol (24diMPOH), and 4-Chloro -3-methylphenol (4Cl3MPOH), and a small part of 2-nitrophenol (2NPOH). The ${\lambda}_{max}$ values of nitrosated phenols in acidic solution were around 300 nm, and those in basic solution were around 400 nm. Molar absorptivities (${\varepsilon}$) at the 400 nm of the nitrosated phenols in the basic solution were 1.5~2.0 times larger than those at 300 nm in acidic solution. It was also found by Capillary-HPLC chromatograms of the nitrosated phenol solutions that the production of the nitrosophenols were interfered by the excess concentration of nitrite (more than $3.0{\times}10^{-3}M$).

페놀 (POH) 용액에 염산과 아질산나트륨을 가하고 이 혼합물 용액의 온도를 상승시키면서 POH의 나이트로소화 반응의 최적조건을 발견하였다. 염산과 아질산나트륨 농도, 반응온도, 그리고 반응시간 변화가 나이트로소페놀 생성에 미치는 효과를 관찰함으로서 발견한 것이다. 결과, POH의 나이트로소화의 최적조건은 0.10 M 이상의 HCl 농도, $5.0{\times}10^{-4}{\sim}2.0{\times}10^{-3}M$ 범위의 $NO{_2}^-$ 농도, $80^{\circ}C$의 반응온도, 그리고 3시간의 반응시간이었다. POH 이외의 10종 미국환경청 분류 상위환경오염페놀들의 나이트로소화 반응도 이 조건에서 진행시켰다. 나이트로소화 반응을 받는 페놀은 POH, 2-클롤로페놀 (2ClPOH), 2,4-다이클롤로페놀 (24diClPOH), 2,4-다이메틸페놀(24diMPOH), 4-클롤로-3-메틸페놀 (4Cl3MPOH), 그리고 적은 양의 2-나이트로페놀 (2NPOH)이었다. 산성 용액에서 나이트로소화된 페놀이나 되지 않은 페놀 여러 종의 최대흡광파장(${\lambda}_{max}$)은 300 nm 부근이었고, 염기성 용액에서는 2,4,6-트리클롤로페놀 (246triClPOH)과 펜타클롤로페놀 (pentaClPOH)을 제외하고, 그 외 모든 페놀들의 ${\lambda}_{max}$는 400 nm부근이었다. 염기성 용액에서 나이트로소화된 POH 및 그 유도체들의 400 nm에서의 몰흡광계수 (${\varepsilon}$)는 이들의 산성 용액 300 nm에서의 ${\varepsilon}$보다 1.5~2.0배 정도였다. 모세관-고성능액체크로마토그래피 (Capillary-HPLC)의 크로마토그램에 의하여 반응용액 중 $NO{_2}^-$ 농도가 0.003 M 이상일 때는 과량의 $NO{_2}^-$가 나이트로소 페놀의 생성을 방해함도 발견하였다.

Keywords

References

  1. U.S.E.P.A. 'Sampling and Analysis Procedures for Screening of Industrial Effluents for Priority Phenols', Environmental Monitoring and Support Laboratory, Cincinnatti, OH, 1977.
  2. P.A. Realini, J. Chromatogr. Sci., 13, 124(1961).
  3. A.H. Nielson, A.S. Alland, P.A. Hynning, and M. Rembergen, J. Chromatogr. A, 719, 105-116(1996).
  4. A.G. Huergen and R. Shuster, LC-GC Intl. 4, 40(1991).
  5. D. Martine, E. Pocurull, R. M. Marcé, F. Borrull, and M. Callul, Chromatographia, 43, 619-624(1996).
  6. Y. Chung, and K. Lee, Microchem. J., 69, 143-152(2001).
  7. C. Zhao, J. Song, and J. Zhang, Anal. Bioanal. Chem., 374(3), 498-504(2002).
  8. E.F. Mohler, Jr. and L.N. Jacob, Anal. Chem. 29, 1369-1375(1957).
  9. M. McEnerg, A. Tsn, J.D. Glennon, J. Aldenman, J. Patlenson, and S.C. O`Mathuna, Analyst, 125, 25-27(2000).
  10. W. Frenzel, and J. Oleksy-Frengel, Anal. Chim. Acta, 261, 253-259(1992).
  11. H.O. Friested, D.E. Ott, and F.A. Gumthen, Anal. Chem., 41, 1750-1754(1969).
  12. Y. Chung and W. Chung, Bull. Korean Chem. Soc., 24(12), 1781-1784(2003).