수은피막 박막흐름전지를 이용한 Anthracycline계 항생제의 전류법 정량

Amperometric Determination of Anthracycline Antibiotics with the Mercury Film Thin Layer Flow Cell

  • 김경은 (상명대학교 자연과학대학 화학과) ;
  • 한영희 (상명대학교 자연과학대학 화학과)
  • 투고 : 2004.08.16
  • 심사 : 2004.11.24
  • 발행 : 2004.12.25

초록

박막흐름전지 (TLFC)의 작업전극인 유리질 탄소전극 (GCE; $A=0.208cm^2$) 표면에 $5{\mu}L$의 HgO 피복용액 (0.5% HgO + 0.25% polystyrene/cyclohexanone)을 피복시키고 pH 4.5 acetate buffer를 흘려주면서 -0.40 V에서 300초간 전해시켰을 때 doxorubicin의 전기환원에 대하여 최대의 감도를 나타내는 수은피막 박막흐름전지 (MFTLFC)를 제작할 수 있었다. MFTLFC에서 doxorubicin은 Ag/AgCl (3 M NaCl)에 대하여 -0.53 V에 이르러 확산전류 (Id)값을 주었으며 수식하지 않은 GCE를 사용한 박막흐름전지 (TLFC)에서 보다 1.7배 더 큰 Id를 나타내었다. 봉우리 면적 (전하)을 doxorubicin과 daunorubicin 표준용액 농도에 대하여 도시한 결과, $1.0{\times}10^{-8}M{\sim}1.0{\times}10^{-6}M$ 농도범위에서 검량인자는 각각 $1.12{\times}10^8{\mu}C/M$ (상관계수: 0.969)과 $0.98{\times}10^8{\mu}C/M$ (상관계수: 0.999)이었다.

The mercury film thin layer flow cell (MFTLFC) which yielded the highest sensitivity for the electrochemical reduction of doxorubicin was constructed by coating the glassy carbon working electrode (GCE; $A=0.208cm^2$) with $5{\mu}L$ of HgO coating solution (0.5% HgO + 0.25% polystyrene/cyclohexanone) and subsequently followed by applying a potential of -0.40 V for 300 sec in the flow stream of an acetate buffer of pH 4.5. The voltammogram of doxorubicin reached the diffusion current plateau at -0.53 V vs. a Ag/AgCl (3 M NaCl) in the MFTLFC. The diffusion current (Id) of doxorubicin at the MFTLFC was 1.7 times greater than the Id obtained at the TLFC employing a bare glassy carbon working electrode. When the peak areas (electric charge) were plotted vs. concentrations of standard anthracyclines, the calibration factors of doxorubicin and daunorubicin were $1.12{\times}10^8{\mu}C/M$ (coefficient of determination; $R^2$: 0.969) and $0.98{\times}10^8{\mu}C/M$> ($R^2$: 0.999), respectively in the concentration range between $1.0{\times}10^{-8}M$ and $1.0{\times}10^{-6}M$.

키워드

참고문헌

  1. 한국 식품 의약품 안전청, '항생물질의약품기준', 315-320, 약업신문사, 한국, 2000.
  2. United States Pharmacopeial Convention, 'U. S. Pharmacopeia & National Formulary', 498, 606, National Publishing, Philadelphia, PA U.S.A., 2000.
  3. British Pharmacopoeia Commission, 'British Pharmacopoeia', 492, 594, The Stationery Office, London, England, 2000.
  4. European Pharmacopoeia Commission, 'European Pharmacopoeia', 706, 784, Council of Europe, Strasbourg, 1997.
  5. P. W. Buehler, S. J. Robles, G. R. Adami, R. Gajee and A. Negrusz, Chromatographia, 49, 557-561(1999).
  6. L. Álvarez-Cedrón, M. L. Sayalero and J. M. Lanao, J. Chromatogr. B, 721, 271-278(1999).
  7. R. Ricciarello, S. Pichini, R. Pacifici, I. Altieri, M. Pellegrini, A. Fattorossi and P. Zuccaro, J. Chromatogr. B, 707, 219-225(1998).
  8. F. Lachâtre, P. Marquet, S. Ragot, J. M. Gaulier, P. Cardot and J. L. Dupuy, J. Chromatogr. B, 738, 281-291(2000).
  9. Q. Hu, L. Zhang, T. Zhou and Y. Fang, Anal. Chim. Acta, 416, 15-19(2000).
  10. Y. Hahn and H. Y. Lee, Arch. Pharm. Res., 27, 31-34(2004).
  11. R. G.-M. Carra, A. Sάnchez-Misiego and A. Zirino, Anal. Chem., 67, 4484-4486(1995).
  12. H. P. Wu, Anal. Chem., 66, 3151-3157(1994).
  13. Y. Hahn and J.-Y. Yoo, J. Kor. Chem. Soc., 41, 180-185(1997).
  14. T. Lee, K.-C. Chung and J. Park, Electroanalysis, 14, 833-838(2002).