DOI QR코드

DOI QR Code

Biomass of Bacterioplankton and Protists and Their Ecological Importance in the Bering Sea

  • Published : 2004.06.30

Abstract

The abundance, biomass and distribution of phytoplankton, bacterioplankton and heterotrophic protists in the Bering Sea were investigated from July to August 1999. Chlorophyll a concentrations in the surface waters ranged from 0.16 to $3.79{\mu}g\;l^{-1}$ Nano-phytoplankton were found to constitute from 63 to 98% of the total phytoplankton biomass, and were clearly the dominant primary producers. The biomass of bacterioplankton in the surface layers varied from 1.46 to $20.2{\mu}g\;C\;l^{-1}$ and accounted for 30% of the total phytoplankton biomass. The biomass of bacterioplankton integrated over a depth of 0 to 100m averaged 65.4% of the total phytoplankton biomass. The surface biomass of heterotrophic protists ranged from 1.2 to $27.4{\mu}g\;C\;l^{-1}$, and was within the same order of magnitude as that of bacterioplankton. Of the total biomass of heterotrophic protists in the upper 100m of the water column, 65% was attributed to protists in the nano-size class. The results of this study suggest that bacteria and nano-protists are important components of the planktonic community in the Bering Sea during the summer season. The abundance of bacterioplankton and planktonic protists decreased from the western to northeastern and eastern regions of the Bering Sea. The abundance of these organisms also decreased with depth. The available evidence suggests that variation in the abundance and distribution of these organisms may be affected by water currents and vertical temperature variation in the Bering Sea.

Keywords

References

  1. Anderson, P. 1988. The quantitative importance of the 'microbial loop' in the marine pelagic: a case study from the North Bering/Chukchi Seas. Arch. Hydrobiol., 31, 243-251.
  2. Anderson, T.R. and H.W. Ducklow. 2001. Microbial loop carbon cycling in ocean environments studied using a simple steady-state model. Aquat. Microb. Ecol., 26, 37-49. https://doi.org/10.3354/ame026037
  3. Booth, B.C., J. Lewin, and J.R. Postel. 1993. Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctoc Pacific. Prog. Oceanogr., 32, 57-99. https://doi.org/10.1016/0079-6611(93)90009-3
  4. Boyd, P. and P.J. Harrison. 1999. Phytoplankton dynamics in the NE subarctic Pacific. Deep-Sea Res., 46, 2405-2432. https://doi.org/10.1016/S0967-0645(99)00069-7
  5. Bury, S.J., P.W. Boyd, T. Preston, G. Savidge, and N.J.O. Owens. 2001. Size-fractionated primary production and nitrogen uptake during a North Atlantic phytoplankton bloom: implications for carbon export estimates. Deep-Sea Res., 48, 689-720. https://doi.org/10.1016/S0967-0637(00)00066-2
  6. Cho, B.C. and F. Azam. 1990. Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar. Ecol. Prog. Ser., 63, 253-259. https://doi.org/10.3354/meps063253
  7. Cota, G.F., L.R. Pomeroy, W.G. Harrison, E.P. Jones, F. Peters, W.M. Sheldon, Jr., and T.R. Weingartner. 1996. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar. Ecol. Prog. Ser., 135, 247-258. https://doi.org/10.3354/meps135247
  8. Gao, G., M. Shi, J. Zhao, and Z. Dong. 2002. Hydrological features of the Bering Sea in the summer of 1999. Acta Oceanol. Sin., 24, 8-16. (in Chinese)
  9. Hansen, B., S. Christiansen, and G. Pedersen. 1996. Plankton dynamics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chain. Polar Biol., 16, 115-128. https://doi.org/10.1007/BF02390432
  10. HELCOM. Guidelines for the Baltic monitoring programme for the third stage. Part D. Biological determinands. Finnish Governmental Printing Centre, Helsiki, 1989. 161 p.
  11. Holm-Hansen, O. and B. Riemann. 1978. Chlorophyll-a determination: improvements in methodology. Oikos, 30, 438-447. https://doi.org/10.2307/3543338
  12. Hood, Z.W. 1999. PROBES: Processes and resources of the eastern Bering Sea shelf. p. 387-407. In: Dynamics of the Bering Sea. eds. by T.R. Loughlin and K. Ohtani. Univeristy of Alaska Sea Grant, AR-SG-99-03. Fairbanks.
  13. Kirchman, D.L., R.G. Keel, M. Simon, and N.A. Welschmeyer. 1993. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep-Sea Res., 40, 967-988. https://doi.org/10.1016/0967-0637(93)90084-G
  14. Kopylov, A.I., D.B. Kosolapov, and M.V. Flint. 2001. Microplanktonic communities in the coastal waters, harbor, and salt lagoon of Saint Paul Island (Pribilof Islands, Bering Sea): Structural and functional analysis. Oceanology., 41, 94-104.
  15. Lee, C.W., I. Kudo, M. Yanada, and Y. Maita. 2001. Bacterial abundance and production and heterotrophic nanoflagellate abundance in subarctic coastal waters (Western North Pacific Ocean). Aquat. Microb. Ecol., 23, 263-271. https://doi.org/10.3354/ame023263
  16. Lee, S. and J.A. Fuhrman. 1987. Relationship between biovolumn and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol., 53, 1298-1303.
  17. Lessard, E.J. 1991. The trophic role of heterotrophic dinoflagellates in diverse marine environments. Mar. Microb. Food Webs, 5, 49-58.
  18. Lin, J.Y., Dai, M. Lin, and Q. Yang. 2002. Distribution of zooplankton in the Bering Sea in Summer. Chinese J. Pol. Res., 14(2), 126-135. (in Chinese)
  19. Liu, H., K. Suzuki, and T. Saino. 2002. Phytoplankton growth and microzooplankton grazing in the subarctic Pacific Ocean and the Bering Sea during summer 1999. Deep-Sea Res., 49, 363-375. https://doi.org/10.1016/S0967-0637(01)00056-5
  20. Odate, T. 1996. Abundance and size composition of the summer phytoplankton communities in the Western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska. J. Oceanogr., 52, 335-351. https://doi.org/10.1007/BF02235928
  21. Olson, M.B. and S.L. Strom. 2002. Phytoplankton growth, microzooplankton herivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep-Sea Res. II, 49, 5969-5990. https://doi.org/10.1016/S0967-0645(02)00329-6
  22. Pomeroy, L.R. and W.J. Wiebe. 2001. Temperature ad substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol., 23, 187-204. https://doi.org/10.3354/ame023187
  23. Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  24. Rivkin, R.B., J.N. Putland, M.R. Anderson, and D. Deibel. 1999. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific. Deep-Sea Res., 46, 2579-2618. https://doi.org/10.1016/S0967-0645(99)00077-6
  25. Rivkin, R.B., M.R. Anderson, and C. Lajzerowicz. 1996. Microbial processes in cold oceans. I. Relationship between temperature and bacterial growth rate. Aquat. Microb. Ecol., 10, 243-254. https://doi.org/10.3354/ame010243
  26. Rysgaard, S., T.G. Nielsen, and B.W. Hansen. 1999. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. Mar. Ecol. Prog. Ser., 179, 13-25. https://doi.org/10.3354/meps179013
  27. Sherr, B.F., E.B. Caron, and B.F. Sherr. 1993. Staining of heterotrophic protists for visualization via epifluorescence microscopy. p. 213-228. In: Handbook of Methods in Aquatic Microbial Ecology. eds. by P.F. Kemp, B.F. Sherr, E.B. Sherr, and J.J. Cole. Lewis Publishers, Boca Raton, FL.
  28. Sherr, E.B., B.F. Sherr, and L. Fessenden. 1997. Heterotrophic protists in the Central Arctic Ocean. Deep-Sea Res., 44, 1665-1682. https://doi.org/10.1016/S0967-0645(97)00050-7
  29. Stabeno, P.J. and R.K. Reed. 1994. Circulation in the Bering Sea Basin observed by satellite-tracked drifters: 1986-1993. J. Physical. Oceanogr., 24, 848-854. https://doi.org/10.1175/1520-0485(1994)024<0848:CITBSB>2.0.CO;2
  30. Steward, G.F., D.C. Smith, and F. Azam. 1996. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar. Ecol. Prog. Ser., 131, 287-300. https://doi.org/10.3354/meps131287
  31. Strickland, J.D.H. and T.R. Parsons. 1968. A practical handbook of sea water analysis. Bull. Fish Res. Board Can., 167, 1-311.
  32. Vehzina, A.F. and C. Savenkoff. 1999. Inverse modeling of carbon and nitrogen flows in the pelagic food web of the northeast subarctic Pacific. Deep-Sea Res., 46, 2909-2939. https://doi.org/10.1016/S0967-0645(99)00088-0
  33. Welschmeyer, N.A., S. Strom, R. Goericke, G. DiTullio, M. Belvin, and W. Petersen. 1993. Primary Production in the subarctic Pacific Ocean: Project SUPER. Prog. Oceanogr., 32, 101-135. https://doi.org/10.1016/0079-6611(93)90010-B