로컬 분산과 로컬 중간값 분산을 이용한 적응형 메디안 필터

Adaptive Median Filter by Local Variance and Local Central Variance

  • 조우연 (공주대학교 정보통신공학부) ;
  • 최두일 (공주대학교 전기전자정보공학과)
  • 발행 : 2004.11.01

초록

신호처리에서 메디안 필터는 임펄스 잡음을 제거하는 비선형 필터 중에서 가장 널리 사용되고, 가장 강력한 효과를 보이고 있다. 본 논문은 잡음 검출에 의한 적응형 메디안 필터를 제안한다. 제안한 필터의 기본 알고리즘은 잡음 여부를 각 판단기준에 의해서 판별한 후, 판별 결과에 따라 조건을 만족하면 메디안 필터를 취하고, 만족하지 않으면 원 영상(No Filter)으로 복원한다. 잡음 판별을 위해서 로컬 분산과 로컬 중간값 분산을 이용한 잡음 검출을 제시했고, 기존의 [5]∼[10] 필터와 특성 및 성능을 비교 분석하였다. 제안한 필터는 기존의 필터를 같은 조건에서 수행한 결과보다 대부분의 경우에서 개선을 보이고, 주관적인 육안으로 판별했을 경우에도, 그 이상의 효과를 보임을 입증하였다. 따라서 로컬 분산과 로컬 중간값 분산을 이용한 적응형 메디안 필터는 메디안 필터의 임펄스 잡음 제거 특성에 강한 장점을 살리고, 에지 보존 능력이 강화되었음을 증명 하였다.

Median Filters in the Signal Processing have been most widely used and have demonstrated the most strongest effects. This paper proposes the Adaptive Median Filters by using noise detection. The basic algorithm of the proposed filters is to determine whether noise or not by the each noise judgement standards, and then take the Median Filter if it satisfies the conditions as a result of judgement and returns to the original image(No Filters) if not. This paper presented Noise Detection by Local Variance and Local Central Variance for noise judgement, compared and analyzed the features and performance of existing [5]∼[10] Filters. Filter improved on the result of executing the existing filters at the same condition and showed the effects over that when it was judged with naked eyes. Accordingly, the Adaptive Median Filters by Local Variance and Local Central Variance was proven to have reinforced edge preservation ability and have the strong features for removing the Impulse Noise of the Median Filter.

키워드

참고문헌

  1. Harley R. Myler, Arthur R. Weeks, The Pocket Handbook of Image Processing Algorithms in C. Prentice-Hall, 1997
  2. RANDY CRANE, A Simplified approach to Image Processing classical & modern techniques in C. Prentice-Hall, 1997
  3. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing. Addison-Wesley, 1993
  4. Alan V. Oppenheim, Alan S. Willsky, Ian Y. Young, Signals and Systems. Prentice-Hall, 1983
  5. Tukey. J.W. Exploratory Data Analysis. Addison-Wesley, Reading, Mass., 1974
  6. D. Brownrigg, 'The weighted median filter', Commun Assoc. Computer, pp.807-818, Mar 1984 https://doi.org/10.1145/358198.358222
  7. S.J Ko, Y.H. Lee 'Center Weighted Median Filters and Their Applications to Image Enhancement' IEEE Trans. Circuits and System, VOL. 38,No. 9, September 1991
  8. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, 2002
  9. Tao Chen, Hong Ren Wu 'Adaptive Impoles Detection Using Center-Weighted Median Filters' IEEE Signal Processing Letters Vol. 8,NO. 1, January 2001 https://doi.org/10.1109/97.889633
  10. E. Abreu, M. Lightstone, S.K. Mitra, K. Arakawa, 'A New Efficient Approach for the Removal of Impulse Noise from Highly Corrupted Images' IEEE Trans. Image Processing, Vol. 5, No.6 June, 1996 https://doi.org/10.1109/83.503916
  11. Scott E Umbaugh, Computer Vision and Image Processing. Prentice-Hall, 1998
  12. Emmanuel C. Ifeachor, Barrie W. Jervis, Digital Signal Processing (A Practical Approach). ADDISON-WESLEY, 1996
  13. Alexander D. Poularikas, THE HANDBOOK Formulas and Tables for Signal Processing. CRC, 1993
  14. How-Lung Eng, Kai-Kuang Ma, 'Noise Adaptive Soft-Switching Median Filter', IEEE Trans. Image Processing, VOL. 10, No.2, pp. 242-251, FEB. 2001 https://doi.org/10.1109/83.902289
  15. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes in C++(The Art of Scientific Computing Second Edition). CAMBRIDGE, 2002