Studies on the High-gain Low Noise Amplifier for 60 GHz Wireless Local Area Network

60 GHz 무선 LAN의 응용을 위한 고이득 저잡음 증폭기에 관한 연구

  • 조창식 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 안단 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 이성대 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 백태종 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 진진만 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 최석규 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 김삼동 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 이진구 (동국대학교 밀리미터파 신기술 연구센터)
  • Published : 2004.11.01

Abstract

In this paper, millimeter-wave monolithic integrated circuit(MIMIC) low noise amplifier(LNA) for V-band, which is applicable to 60 GHz wireless local area network(WLAN), was fabricated using the high performance 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate pseudomorphic high electron mobility transistor(PHEMT). The DC characteristics of PHEMT are drain saturation current density(Idss) of 450 mA/mm and maximum transconductance(gm, max) of 363.6 mS/mm. The RF characteristics were obtained the current gain cut-off frequency(fT) of 113 GHz and the maximum oscillation frequency(fmax) of 180 GHz. V-band MIMIC LNA was designed using active and passive device library, which is composed of 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate PHEMT and coplanar waveguide(CPW) technology. The designed V-band MIMIC LNA was fabricated using integrated unit processes of active and passive device. The measured results of V-band MIMIC LNA are shown S21 gain of 21.3 dB, S11 of -10.6 dB at 60 GHz and S22 of -29.7 dB at 62.5 GHz. The measured result of V-band MIMIC LNA was shown noise figure (NF) of 4.23 dB at 60 GHz.

본 논문에서는 60 GHz 무선 LAN(wireless local area network) 응용을 위해 0.1 ㎛ Γ-gate pseudomorphic high electron mobility transistor(PHEMT)를 이용하여 V-band용 millimeter-wave monolithic integrated circuit(MIMIC) 저잡음 증폭기를 설계 및 제작하였다. 본 연구에서 개발한 PHEMT의 DC 특성으로 드레인 포화 전류 밀도(Idss)는 450 mA/mm, 최대 전달컨덕턴스(gm, max)는 363.6 mS/mm를 얻었으며, RF 특성으로 전류이득 차단주파수(fT)는 113 GHz, 최대 공진 주파수(fmax)는 180 GHz의 성능을 나타내었다. V-band MIMIC 저잡음 증폭기의 개발을 위해 PHEMT의 비선형 모델과 CPW 라이브러리를 구축하였으며, 이를 이용하여 V-band MIMIC 저잡음 증폭기를 설계하였다. 설계된 V-band MIMIC 저잡음 증폭기는 본 연구에서 개발된 PHEMT 기반의 MIMIC 공정을 이용해 제작되었으며, V-band MIMIC 저잡음 증폭기의 측정결과, 60 GHz에서 S21이득은 21.3 dB, 입력반사계수는 -10.6 dB 그리고 62.5 GHz에서 출력반사계수는 -29.7 dB의 특성을 나타내었다. V-band MIMIC 저잡음 증폭기의 잡음지수 측정결과, 60 GHz에서 4.23 dB의 특성을 나타내었다.

Keywords

References

  1. H-L. A. Hung et al., '60-GHz GaAs MMIC low-noise amplifiers,' Proceedings of IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp, pp.87-90, 1988 https://doi.org/10.1109/MCS.1988.197296
  2. J. Brenz et al., '44-GHz monolithic low-noise amplifier,' Proceedings. of IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp, pp. 15-18, 1987
  3. Skolnik, M. I., 'Millimeter and Submillimeter Wave Application,' Proceedings of the Symposium on Submillimeter Waves, pp. 9-25, 1970
  4. J.B. Shealy, M. M. Hashemi, K. Kiziloglu, S. P. DenBaars, U. K. Mishira, T. K. Liu, J.J. Brown, and M. Lue, 'High-Breakdown Voltage AllnAs/ GaInAs Junction Modulated HEMT's(JHEMT's) with Regrown Ohmic Contacts by MOCVD,' IEEE Electron Device Letters, vol. 14, no. 12, pp. 545-547, 1993 https://doi.org/10.1109/55.260784
  5. W. R. Curtice, 'A MESFET model for use in the design of GaAs integrated circuits,' IEEE Transaction on Microwave Theory and Techniques, vol. 28, no. 5, pp. 448-456, 1980 https://doi.org/10.1109/TMTT.1980.1130099
  6. P. C. Canfield, S. C .F. Lan, 'Modeling of frequency and temperature effects in GaAs MESFETs,' IEEE Journal. of Solid-State Circuits, vol. 25, no. 1, pp. 299-306, 1990 https://doi.org/10.1109/4.50317
  7. J. M. Golio, M. Miller, G. Maracus, and D. Johnson, 'Frequency dependent electrical characteristics of GaAs MESFETs,' IEEE Transaction.Electron Devices, vol. 37, no. 5, pp. 1217-12Z7, 1990 https://doi.org/10.1109/16.108182
  8. Dan An, Bok Hyung Lee, Yeon Sik Chae, Hyun Chang Park, Hyung Moo Park and Jin Koo Rhee, 'Low LO Power V-band CPW Down-Converter Using a GaAs PHEMT,' Journal of the Korean Physical Society, vol. 41, no. 6, pp. 1013-1016, 2002
  9. Won-Young Uhm, Woo-Suk Sul, Han-Shin Lee, Sam-Dong Kim, Hyung-Moo Park, and Jin-Koo Rhee, 'High-Performance V-band Monolithic Quadruple Subharmonic Mixer With Anti-Parallel Diode Pair,' Micro. and Optical Tech. Lett. vol. 40, No. 5, pp. 349-352, March 2004 https://doi.org/10.1002/mop.11378
  10. Tae-Sin Kang, Seong-Dae Lee, Bok-Hyoung Lee, Sam-Dong Kim, Hyun-Chang Park, Hyung-Moo Park, and Iin-Koo Rhee, 'Design and Fabrication of a Low-Noise Amplifier for the V-band,' Journal of the Korean Physical Society, vol. 41, no. 4, pp. 533-538, 2002
  11. J. W. Shin, Y. S. Yoon, S. D. Lee, H. C. Park and J. K Rhee, 'Effects of He gas on hydrogen content and passivation of GaAs PHEMT with SiN films,' Proceeding of Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices (AWAD), pp. 121-124, 2000
  12. Il-Hyeong Lee, Seong-Dae Lee, and Jin-Koo Rhee, 'Studies on Air-Bridge Processes for mmwave MMIC's Applications,' Journal of the Korean Physical Society, vol. 35, no. 12, pp. S1043-S1046, 1999
  13. M. Schlechtweg, W. Reinert, P.J. Tasker, R. Bosch, J. Braunstein, A. Hulsmann, K. Kohler, 'Design and characterization of high performance 60GHz Pseudomorphic MODFET LNAs in CPW-Technology Based on Accurate S-Parameter and Noise Models,' Proceedings of IEEE Micro-wave and Millimeter-Wave Monolithic Circuits Symp, pp. 29-32, 1992 https://doi.org/10.1109/MCS.1992.185989