DOI QR코드

DOI QR Code

A Review : Underwater Applications of Ionic Polymer -Metal Composites

이온성 고분자-금속 복합체의 수중 응용

  • 허석 (네바다 주립대학교 기계공학과) ;
  • 제이슨파켓 (네바다 주립대학교 기계공학과) ;
  • 김광진 (네바다 주립대학교 기계공학과)
  • Published : 2004.11.01

Abstract

Specialized propulsors for naval applications have numerous opportunities in terms of research, design and fabrication of an appropriate propulsor. One of the most important components of any propulsor is the actuator that provides the mode of locomotion. Ionomeric electro-active polymer may offer an attractive solution for locomotion of small propulsors. A common ionomeric electro-active polymer, ionic Polymer-Metal Composites (IPHCs) give large true bending deformations under low driving voltages, operate in aqueous environments, are capable of transduction and are relatively well understood. IPMC fabrication and operation are presented to further elucidate the use of the material for a propulsor. Various materials, including IPMCs, are investigated and a simplified propulsor model is explored.

Keywords

References

  1. Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential and Challenges, SPIE Press, March 2001, pp. 1-671
  2. P. R. Bandyopadhyay, 'Maneuvering hydrodynamics offish and small underwater vehicles,' Integrative and Comparative Biology, vol. 42, no. 1,2002,pp.102-117 https://doi.org/10.1093/icb/42.1.102
  3. P. R. Bandyopadhyay, W. P. Krol, D. P. Thivierge, W. H. Nedderman, M. Mojarrad, 'A biomimetic propulsor for active noise control: experiments,' NUWC-NPT Technical Report 11,351,2002
  4. W. P. Krol, A. Annaswamy, P. R. Bandyopadhyay, 'A biomimetic propulsor for active control: theory,' NUWC-NPT Technical Report 11, 350, 2002
  5. Y. Abe, A. Mochizuki, T. Kawashima, S. Yamashita, 'Effect on bending behaviour of counter cation species in perfluorinated sulfonate membrane-platinum composite', Polymers for Advanced Technologies, vol. 9, 1998, pp. 520-526 https://doi.org/10.1002/(SICI)1099-1581(199808)9:8<520::AID-PAT791>3.0.CO;2-G
  6. K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhata, H. Takenaka, 'Bending of polyelectrolyte membrane-platinum composites by electric stimululi I. response characteristics to various waveforms', Polymer Journal, vol. 27, no. 4, 1995, pp. 436-440 https://doi.org/10.1295/polymj.27.436
  7. K. Asaka, K. Oguro, 'Bending of polyelectrolyte membrane platinum composites by electric stimuli part II. response kinetics', Journal of Electroanalytical Chemistry, vol. 480, 2000, pp.186-198 https://doi.org/10.1016/S0022-0728(99)00458-1
  8. R. H. Baughman, 'Conducting polymer artificial muscles', Synthetic Metals, vol. 78, 1996, pp. 339-353 https://doi.org/10.1016/0379-6779(96)80158-5
  9. K. Bhattacharya, J. Li, Y. Xiao, 'Electromechanical models for optimal design and effective behavior of electroactive polymers,' in Electroactive Polymer (EAP) Actuators as Artificial Muscles (ed. Y. Bar-Cohen), SPIE, 2001, Bellingham, Washington
  10. P. G. De Gennes, K. Okumura, M. Shahinpoor, K. J. Kim, 'Mechanoelectric effects in ionic gels,' Europhysics Letters, vol. 50, no. 4, 2000,pp. 513-518 https://doi.org/10.1209/epl/i2000-00299-3
  11. E. T. Enikov, B. J. Nelson, 'Electrotransport and deformation model of ion exchange membrane based actuators', SPIE Proc., 2000, pp. 129-139 https://doi.org/10.1117/12.387771
  12. R. P. Hamlen, C. E. Kent, S. N. Shafer, 'Electrolytically activated contranctile polymer', Nature, vol. 206, 1965, pp. 1149-1150 https://doi.org/10.1038/2061149b0
  13. J. Jung, Y. Tak, B. Kim, J.-O. Park, S. Lee, and J. Pak, 'Tadpole robot (TadRob) using ionic polymer metal composite (IPMC)', Proceedings of SPIE, vol. 5051, 2003, pp. 272-280 https://doi.org/10.1117/12.484299
  14. A. Katchalsky, 'Rapid swelling and deswelling of reversible gels of polymeric acids by ionization', Experientia, vol. V, 1949, pp.319-320 https://doi.org/10.1007/BF02172636
  15. K. J. Kim, and M. Shahinpoor, 'Ionic polymer-metal composites - II. manufacturing techniques,' Smart Materials and Structures, vol. 12, no. 1, 2003, pp. 65-79 https://doi.org/10.1088/0964-1726/12/1/308
  16. K. J. Kim, and M. Shahinpoor, 'Development of three dimensional ionic polymer-metal composites as artificial muscles,' Polymer, vol. 43, no. 3, 2002, pp. 797-802 https://doi.org/10.1016/S0032-3861(01)00648-6
  17. K. J. Kim, and M. Shahinpoor, 'Applications of polyelectrolytes in ionic polymeric sensors, actuators, and artificial muscles,' Review Chapter in Handbook of Polyelectrolytes, edited by S. Tripathy, J Kumar, and H. S. Nalwa, American Scientific Press (ASP), vol. 3, Chapt. 1, 2002, pp. 1-22
  18. G., Kofold, Dielectric Elastomer Actuator, Ph.D. Thesis, The Technical University of Denmark, September 2001
  19. W. Kuhn, O. Kunzle, A. Katchalsky, 'Verhalten polyvalenter fadenmolekelionen in losung', Halvetica Chemica Acta, vol. 31, 1948,pp.1994-2037 https://doi.org/10.1002/hlca.19480310716
  20. W. Kuhn, 'Reversible debnung und kontraktion bei anderung der ionisation eines netzwerks polyvalenter fadenmolekulionen', Experientia, vol. V, 1949,pp. 113-125
  21. W. Kuhn, B. Hargitay, A. Katchalsky, H. Eisenberg, 'Reversible dilation and contraction by changing the stat of ionization of high-polymer acid networks', Nature, vol. 165, 1950, pp 514-516 https://doi.org/10.1038/165514a0
  22. W. Kuhn, B. Hargitay, 'Muskelahnliche kontraktion und debnung von netzwerken polyvalenter fadenmolekulionen', Experientia, vol. VII, 1951, pp. 1-11
  23. J. D. Madden, N. Vandesteeg, P. G. Madden, A. Takshi, R Zimet, P. A. Anquetil, S. R. Lafontaine, P. A. Wierenga, I. W. Hunter, 'Artificial muscle technology: physical principles and naval prospects', Proceedings of UUST03, 2003
  24. J. D. W. Madden, P. G. A. Madden, I. W. Hunter, 'Conducting polymer actuators as engineering materials', SPIE Proc., 2002, pp.176-190 https://doi.org/10.1117/12.475163
  25. K. Mallavarapu, K. Newbury, D. Leo, 'Feedback control of the bending response of Ionic polymer-metal composite actuators', SPIE Proc., 2001, pp. 301-310 https://doi.org/10.1117/12.432660
  26. M. Mojarrad, Characterization and Modeling of Ionic Polymeric Smart Materials as Artificial Muscles and Robotic Swimming Structures, University of New Mexico, PhD Dissertation, 2001
  27. J.-D. Nam, J. H. Lee, H. R. Choi, H. M. Kim, J. W. Jeon, J. Paquette, K. J. Kim, Y. S. Tak, and H. Xu, 'Development of electroactivc silicate nanocomposites prepared for use as ionic polymer-metal composites (IPMC's) artificial muscles and sensors', Proceedings of SPIE- Smart Structures and Materials, March 2002, paper #4965-42
  28. S. Nemat-Nasser, C. W. Thomas, 'Ionomeric polymer-metal composites', in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Reality, Potential, and Challenges, ed. Bar-Cohen, Y., SPIE Press, Washington, U.S.A., 2001
  29. S. Nemat-Nasser, 'Micromechanics of actuation of ionic polymer-metal composites', Journal of Applied Physics, vol. 92, no. 5, September 2002 https://doi.org/10.1063/1.1495888
  30. K. Newbury, D. J. Leo, O. Parrot, 'Mechanical work and electromechanical coupling in ionic polymer bender actuators', Proc. ASME 2001. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2001, Paper number AD-23705
  31. K. Newbury, Characterization, Modeling, and Control of Ionic Polymer Transducers, PhD Dissertation, Virginia Polytechnical Institute and State University, September 2002
  32. K. Oguro, K. Asaka, H. Takenaka, 'Actuator element', U.S. Patent #5,268,082, 1993
  33. K. Oguru, N. Fujiwara, K. Asaka, K. Onishi, S. Sewa, 'Polymer electrolyte actuator with gold electrodes', SPIE Proc., 1999, pp. 64-71 https://doi.org/10.1117/12.349698
  34. Y. Osada, H. Okuzaki, H. Hori, 'A polymer gel with electrically driven motility,' Letters to Nature, vol. 355, 1992, pp. 242-244 https://doi.org/10.1038/355242a0
  35. J. W. Paquette, K. J. Kim, J.-D. Nam, Nam Y. S. TaK, 'An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nanocomposite technique', Proceedings of ASME IMECE'02, 2002, Paper #ASMS40
  36. K. Sadeghipour, R. Salomon, S. Neogi, 'Development of a novel electrochemically active membrane and smart material based vibration sensor/damper', Smart Materials and Structures, vol. 1, no. 2, 1992, pp. 172-179 https://doi.org/10.1088/0964-1726/1/2/012
  37. M. Shahinpoor, 'Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles,' Smart Structures and Materials, vol. 1, 1992, pp. 91-94 https://doi.org/10.1088/0964-1726/1/1/014
  38. M. Shahinpoor, M. Mojarrad, 'Soft actuators and artificial muscles', US. Patent #6,109,852, 2000
  39. M. Shahinpoor, K. J. Kim, 'Ionic polymer-metal composites: I. fundamentals,' Smart Materials and Structures, vol. 10, 2001, pp 1-15 https://doi.org/10.1088/0964-1726/10/4/327
  40. M. Shahinpoor, and K. J. Kim, 'A novel physically-loaded and interlocked electrode developed for ionic polymer-metal composites (IPMCs)', Actuator and Sensors-A. Physical, vol. 96, 2002,pp. 125-132 https://doi.org/10.1016/S0924-4247(01)00777-4
  41. S. adokoro, S. Fuji, T. Takamori, K. Oguro, 'Distributed actuation devices using soft gel actuators', Distributed Manipulators, Kluwer Academic Press, 2000, pp. 217-235
  42. S. Tadokoro, T. Takamori, K. Oguro, 'Modeling IPMC for design of actuation mechanisms', in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Reality, Potential, and Challenges, ed. Bar-Cohen, Y., SPIE Press, Washington, U.S.A., 2001
  43. S. G. Wax, R R Sands, 'Electroactive polymer actuators and devices', SPIE Proc. 1999, pp. 2-9
  44. Xiao, Yu, K. Bhattacharya, 'Modeling electromechanical properties of ionic polymers', SPIE Proc., 2001, pp. 292-300
  45. Q. M. Zhang, V. Bharti, Z. Y. Cheng, T. B. Xu, S. Wang, Ramotowski, T. S., Tito, F., Ting, R, 'Electromechanical behavior of electroactive P(VDF-TrFE) copolymers', SPIE Proc.,1999, pp. 134-139 https://doi.org/10.1117/12.349670
  46. A. Eisenberg, H. L. Yeager, Perfluorinated Ionomer Membranes, ACS Symposium Series 180, ACS, Washington DC, 1982
  47. A. Eisenberg, Ions in Polymers, Advances in Chemistry Series, American Chemical Society, Washington D.C., 1980
  48. M. Escoubes, and M. Pineri, in Perfluorinated Ionomer Membranes (ed. A. Eisenberg and H. L. Yeager), ACS Symposium Series, 180, Chapt. 2, 1982
  49. T. D. Gierke, G. E. Munn, and F. C. Wilson, 'Morphology of perfluorosulfonated membrane products (Wise-Angle and Small-Angle X-Ray Studies)', in Perfluorinated Ionomer Membranes, ACS Series 180, ACS, Washington D.C., 1982
  50. P. J. James, J. A. Elliott, T. J. McMaster, J. M. Newton, A. M. S. Elliott, S. Hanna, M. J. Miles, 'Hydration of nafion studied by AFM and X-ray scattering', Journal of Materials Science, vol. 35,2000, pp. 5111-5119 https://doi.org/10.1023/A:1004891917643
  51. M. Alexandre, P. Dubois, 'Polymer-layered silicate nano-composites: preparation, properties, and uses of a new class of materials,' Materials Science and Engineering, vol. 28, 2002, pp. 1-63 https://doi.org/10.1016/S0927-796X(00)00012-7
  52. A. Eisenberg, and F. E. Bailey, Coulombic Interactions in Macromolecular Systems, ACS Symposium Series, 302, American Chemical Society, Washington D.C., 1986
  53. R. J. Full, K. Meijer, 'Artificial buscles versus natural actuators from frogs to flies', SPIE Proc., 2000, pp. 2-9 https://doi.org/10.1117/12.387761
  54. G. Gebel, P. Aldebert, M. Pineri, 'Structure and related properties of solution-case perfluosulfonate ionomer films,' Macromole-cules, vol. 20, 1987, pp. 1425-1428 https://doi.org/10.1021/ma00172a049
  55. T. Hashimoto, M. Fujimura, H. Kawai, 'Structure of sulfonated and caboxylated perfluorinated ionomer membrane,' in Perfluorinated Ionomer Membranes (A. Eisenberg and H. Yeager [46]), ACS Symposium Serious 180, 1982
  56. R. J. Lawrence, L. D. Wood, U.S. Pat., 4,272,353,1981
  57. Liu, Raymond, Her, Wei-Hwa, Fedkiw, S. Peter, 'In situ electrode formation on a nation membrane by chemical platinization,' Journal of Electrochemical Society, vol. 139, no. 1, 1992, pp. 15-23 https://doi.org/10.1149/1.2069162
  58. P. Millet, M. Pineri, R. Durand, 'New solid polymer electrolyte composites for water electrolysis', Journal of Applied Electrochemistry, vol. 19, 1989,pp. 162-166 https://doi.org/10.1007/BF01062295
  59. M. W. Rosen, Water Flow About a Swimming Fish, US Naval Ordinance Test Station, Master Thesis, 1959
  60. B. K. G. Theng, The Chemistry of Clay-Organic Reactions, Wiley, New York, 1974
  61. J. Paquette, K. J. Kim, J.-D. Nam, Y S. Tak, 'An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nano-composite technique,' Journal of Intelligent Materials Systems and Structures, vol. 14, pp. 633-6424, 2003 https://doi.org/10.1177/104538903038024
  62. M. Shahinpoor, D. Adolf, D. W. Segalman, Witkowski, 'Electrically controlled polymeric gel actuators,' US Patent 5,250,167,2003
  63. M. Shahinpoor, K. J. Kim, 'Experimental study of ionic polymer-metal composites in various cation forms: actuation behavior,' Science and Engineering of Composite Materials, vol 10, no. 6,pp. 423-436, 2002
  64. M. Shahinpoor, K. J. Kim, D. Leo, 'Ionic polymer-metal composites as multifunctional materials,' Polymer Composites, vol. 24, no. 1, pp. 24-33, 2003 https://doi.org/10.1002/pc.10002
  65. M. Shahinpoor, K. J. Kim, 'Mass transfer induced hydraulic actuation in ionic polymer-metal composites,' Journal of Intelligent Materials Systems and Structure, vol. 13, no. 6, pp. 369-376, 2002 https://doi.org/10.1177/104538902761696715