DOI QR코드

DOI QR Code

Customer Satisfaction of Statistical Quality of Information & Communication Technology

정보통신산업 통계품질 향상을 위한 이용자 만족도 조사

  • 장인상 (연세대학교 컴퓨터과학·산업시스템공학과) ;
  • 문태희 (연세대학교 컴퓨터과학·산업시스템공학과) ;
  • 손소영 (연세대학교 컴퓨터과학·산업시스템공학과)
  • Published : 2004.11.01

Abstract

Upon rapid growth of Information and Communication Technology (ICT) in Korea, the necessity of improved quality of official statistics in ICT is uprising. In order to improve the quality of ICT statistics, various factors such as survey quality, processing quality, output quality and reputation of statistical agency need to be considered together. We use a structural equation model to find a relationship among such factors which can influence the customer satisfaction. Furthermore, this study provides customer with characterized feedback information by comparing the satisfaction indices. It is expected that our model can be used to improve the quality of official ICT statistics.

최근 정보통신은 국가 핵심사업으로 급속히 성장하고 있어 정보통신산업 통계의 필요성이 더욱 대두되고 있다. 정보통신산업 통계품질은 조사품질, 통계자체품질, 통계결과물에 대한 품질, 통계생산 기관의 품질 등 다양한 요인들에 의해서 이루어진다 이에 본 연구는 구조방정식을 이용하여 정보통신산업협회의 통계 이용자를 대상으로 통계품질에 영향을 주는 다양한 요인들간의 관계를 파악하고자 한다. 이와 더불어 이용자의 특성에 따른 만족도를 비교함으로써 이용자별 특성에 맞는 통계를 제공하고자 한다. 본 연구의 결과는 정보통신산업 통계를 생산하는 기관들의 평가 및 통계품질 향상을 위한 자료로 사용할 수 있을 것이다.

Keywords

References

  1. Bagozzi, R.P. (1980). Causal Model Marketing, New York: John Wiley & Sons, USA
  2. Eurostat (2000). Assessment, of the quality in statistics, Item 4. of the agenda, Definition of quality in statistics
  3. Evans, K. (1999), MQ057 Model quality report in business Statistics, National Statistics, Guidelines for implementation of Model Quality Report, UK
  4. Fornell, C. (1992), A national customer satisfaction barometer: the swedish experience, Journal of Marketing, 56, 6-21 https://doi.org/10.2307/1252129
  5. Fornell, C. and Bokstein, F.L. (1982), Two structural equation: LISREL and PLS applied to consumer exit-voice theory, Journal of Marketing Research, 19, 440-52 https://doi.org/10.2307/3151718
  6. Jones, D.R. (1992), The future of statistics and statisticians in European regulatory affairs, Controlled Clinical Trials, 13, 459-465 https://doi.org/10.1016/0197-2456(92)90203-C
  7. Marta, F.H. and Jean, M. (2001), Delivering and measuring data quality in UK National Statistics, FCSM research conference, Federal Committee on Statistical Methodology
  8. Sohn, S.Y. & Moon, T.H. (2003), Structural equation model for predicting technology commercialization success index (TCSI), Technological Forecasting and Social Change, 70, 885-899 https://doi.org/10.1016/S0040-1625(03)00004-0
  9. http://www.ncsi.or.kr