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Dynamic Output-Feedback Receding Horizon H, Controller Design

Seung Cheol Jeong, Jeong Hye Moon, and PooGyeon Park*

Abstract: In this paper, we present a dynamic output-feedback receding horizon Hy
controller for linear discrete-time systems with disturbance. The controller is obtained
numerically from the finite horizon output-feedback H, optimization problem, which is, in fact,
hardly solved analytically. Under a matrix inequality condition on the terminal weighting
matrix, the monotonic decreasing property of the cost is shown. This property guarantees both
the closed-loop stability and the H,, norm bound. Then, we extend the proposed design method
to a reference tracking problem and a problem for time-varying systems. Numerical examples
are given to illustrate the performance of the proposed controller.

Keywords: Asymptotic stability, dynamic output-feedback controller, LMI, receding horizon

H,, control.

1. INTRODUCTION

Receding horizon control (RHC), also known as
model predictive control (MPC), has received much
attention in control societies because of its good
tracking performance and many applications to
industrial processing systems such as distillation and
paper processing [1-7]. The basic concept of the RHC
is to solve an optimization problem over a fixed
number of future time instants at the current time and
to implement the first one among the solutions as the
current control law. The procedure is then repeated at
each subsequent instant. In particular, it is also a
suitable control strategy for time-varying systems,
reference tracking systems and constrained systems
[8-13].

For systems with disturbance, there have been
several results on the state-feedback receding horizon
H, control (RHHC), which not only guarantee the
closed-loop stability but also provide the Honorm
bound [14-17]. Alternatively, various results have
been presented on the output-feedback RHC [18-23].
All these works consider the regulation problem for
disturbance-free systems [18,20] or systems with
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bounded disturbance (the bounded disturbance is
assumed owing to the input constraint). All these
works take the observer-based approach where the
controller is composed of a state observer and a static
controller associated with observer states. To
guarantee the closed-loop system stability in those
control schemes, the state estimation errors should go
to zero or remain as a bounded set as time goes on.

In many real plants, however, an abrupt disturbance
with immense magnitude often enters the system.
Moreover, since RHC also has merits in favor of
reference tracking problems and problems for time-
varying systems as well as constrained systems, there
is still more to be studied to widen the RHC
application area. Up to now, however, there has been
little result on the output-feedback receding horizon
H, controller (ORHHC) design and tracking
controller (ORHTC) design or on the output-feedback
problem for time-varying systems.

In this paper, we design an ORHHC for linear
discrete-time systems with disturbance. The proposed
control scheme adopts a general form of dynamic
controller rather than an observer-based controller.
After solving the difficuity related to regulation, we
extend the results to the tracking problem and to the
problem for time-varying systems. The proposed
controller is obtained numerically from the finite
horizon output-feedback H, optimization problem,
which is, in fact, hardly solved analytically. Under a
matrix inequality condition on the terminal weighting
matrix, the closed-loop system stability and the H,
norm bound are guaranteed.

This paper is organized as follows. Section 2
describes the system, the dynamic controller form and
the finite horizon LQ cost for the ORHHC. We also
briefly address the ORHHC scheme using the
dynamic controller. Section 3 presents an ORHHC.
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Section 4 indicates that the proposed controller
stabilizes the closed-loop system and guarantees the
H,norm bound. Section 5 extends this control design
method to a tracking problem and a problem for time-
varying systems. Sections 6 and 7 provide numerical
examples and concluding remarks, respectively.

2. PROBLEM FORMULATION

Let us consider the discrete-time linear system
described by

Xp1 = Axk + Buk + DWk,

(M

Vi = ka + EWk’

where x, e R",u, €eR™ y, R and w, eR°
denote state, input, output and disturbance vectors,
respectively. It is assumed that the system described
by (1) is stabilizable and detectable. In this paper, the
notation X =Y (respectively X >Y ) where X and
Y are symmetric matrices, means that X —Y is
positive semi-definite (respectively, positive definite).

The goal of this paper is to design an ORHHC,
which stabilizes the system (1) and guarantees the H,
norm bound of the following form (so-called the
dynamic output-feedback controller)

Zj1 = Ag 2 + By, ¥}

wp = Czy + Dy, 3)

where z, eR" and 4;,B;,C{ and D; are design
variables. We shall design the ORHHC based on the
finite horizon output-feedback H, optimal control,

which can be solved through the dynamic game
approach [24]. Thus, we first formulate the output-
feedback H, optimal control problem with the
following cost

N-1

T T
Jiegean (M) = z ik O% v e + Wiewithe Rt i
i=0

2. T
=¥ Wik Weilk §
T
Yean | | X Y | X%k
+ r , (4
Ziank | LY Z ]| ZreNik

which is minimized by the control sequence
Uy, 1=0,...,N—1 and maximized by wj .,

i=0,.,N—1. Here N is a finite positive integer,
¥ is a disturbance attenuation level and

X,
e =L"} 0<QeR™, 0<ReR™"™,
k

X Y 2nx2

0<| - =P, e R (%)
Yy 7z

We denote xp i, g and zg e (which will

be defined below) as i th ahead predicted variables at
time &k with xg; =x;, zx =z These variables

satisfy
Xevivlk = A + Bl (6)
Vieritk = CXsilies (7)
Zivivik = AN Zksite T BN Vesilies (3)
Werik = ConZsie + DN Virie- )

Let u; +ijk and Wi +ik be unique saddle-point
control and disturbance sequences of the dynamic
game. Also let xp, ., {47y, Biy, Cin, Dy}

[

and z; .k be corresponding state trajectory,

dynamics and state trajectory of the dynamic output-
feedback controller, respectively, with x,tlk =x; ,
z,t| x = Z¢- Then the output-feedback receding horizon

controller dynamics and input in (2) and (3) at time &
are chosen as

A B &y B .
|: k k:|:|:AO,N O,N:I and uk=uk|k.(10)

c ¢ e ok
Cy Dj Con Don

In the following section, we shall derive the
ORHHC based on the finite horizon output-feedback
H,, optimal control problem.

3. DESIGN OF ORHHC

We start the derivation of the ORHHC with the
augmentation of the system and controller equation.
Combining (6) and (8) provides the following closed-
loop system

Mevivte =LA + BoZi v Co i
+[Dy + BoZ; n Eo Wpipp»

(1D

where
Xhyifk 4y By 4 0
Merige = iy = o N Ay =
Zheilk Cin Din 00

ol et o[22
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Since it holds that

Xierilk E 0 R 0
= k+ilk Wie+ilk »
weri | | EaZinCo | T T By nEg | KT

E =1 0}, E,=[0 I],

(4) can be represented as

N1
Jigen T = 2 Staipe Oisipe s Zi v > W)
i=0 (12)

T
+ M Nk P e N>
where

Skeite T > Zi N s Wesik) = Mhvilk [EIT QE,
+(EyZ; nCo) R(EZZ; v Cy Wil vik
+ i [(BaZi yCo) R(ESZ,; v Ey MWeripe
+ Wik [(EaZi nEp)' R(E,Z; v Gy DTk
+ Wik [(B2Zy wEo) R(ESZ, v Ey MW rie

(13)

2T
Y Wi Wik -

Remark 1: We remark that the terminal weighting
matrix plays a crucial role in guaranteeing the stability
of the closed-loop system in the RHHC, which will be
explained in Section 4. If the conventional RHHC
where Y=0 and Z=0, and thus the terminal

weighting matrix P, is not full-rank, we shall have

some difficulty in ensuring the closed-loop stability
because the feasible region of the terminal weighting
matrix in (25) of Section 4 becomes very narrow.

From now on, we derive the finite horizon output-
feedback H. optimal controller for the augmented
system (11) and the cost (12). Let us denote

x T
it N evivipe) = Mevine B v evice - (14)

as the optimal value of Ji ;. xin (griqp) - Then,

the application of the dynamic programming to this
problem leads to the recurrence equation; for
i=0,.,.N-1,

Tieriger s i) = Seeeik (1, > Zi N> W) as)

*
+ Jrviethe N i)

with initial value

* T
Teen N eane) = 1y BN NI wpeo 16)
Pyvn =P

The saddle point disturbance vector wj, +ijk can be

found through the partial differentiation of Sp

(77k+l.|k s Zi N> Weaie ) With respect to wy_ . ;

Wi =17 - (Ezzi,NEO)TR(EZZi,NEO)
—(Dy + BoZi wCo) Py
x(Dy + Bozi,NCO)]_l[(Ezzi,NEO)T a7
XR(ELZ; yCo)+(Dy + ByZ; yCo)
x BN (Ao + BoZy NCo) ik,

which maximizes Jy.; gy n (Tgpip) - We remark that
(17) can exist uniquely if and only if

0< 72 —(Ey%; yEg) R(E,Z; v Eg)—(Dy

(18)
+ByZ; nCo)Fy (D + ByZ; yCo),

which shall be called ‘the existence condition’ of the
unique saddle point solution of the dynamic game in

this paper. Here, we apply Wlt+ijk 0 Jiyikrn

(7 +q ) to consider the worst-case situation. The

resulting o oo Mevi)s 58 Tihi s N Olsip)s

becomes

w
Tivi e N M)

. ExinC TR o T
= Mhsitk Ay + ByZ; yC 0 FBaw

7t (19)
E)X; nEy :l

| BZinE
4 Dy +ByZ; yCo || Dy + BoZ; xCo

EyZ; vCo T
’ + E; QF, 1
LO +ByZ; v Co 1 OF1 | Tevie
Then the output-feedback worst-case (H.,) optimal
controller EZ n that minimizes J;%;,,y can be
obtained from the following linear programming (in
fact, %], is hardly found analytically);

Minimize the trace of F, y subject to (20)
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N e “IfR o T

TN 2

Ay + BoZ; nC 0 Fawn
-1

| BXinE Ey)x; vEy @1
4 Dy + BoZ; nCo || Dy + Box; vCo
y EyZi nCy

Ay + BoZ; yCy

with the given F,; y.

}+E1TQE

Using Schur’s complement, (21) can be converted into
the following inequality

R E,%; vCo
(B, nCo)  E[QE -Py
0 4y + BpZ; nCo
(Ex% nEp)T 0
0 Ezzi’NEo
(4o + BoZ; yCo)' 0 <0
—Piin Do +BoZinEy|

(Do + BoZ; v Ey ) ~y*

(22)

We summarize the output-feedback RHHC design
procedure without proof in the following theorem.

Theorem 1: (Dynamic output-feedback RHHC)
Given Py, if the finite horizon output-feedback
optimal controller dynamics ZZN, i=0,., N-1,

which minimize (19), are obtained recursively by the
linear programming (20), then the resulting saddle-

point value, say J,t,k +n (7)), of the cost (12) with

EZN i=0,..,N-1 isgiven by
Jiken ) =11E By n1lies (23)

and the dynamic output-feedback receding horizon H,
controller u;, is definedas u; =u,t|k.

Remark 2: In the linear programming (20), we
used the well-known trick often employed in
optimization problems;

mzin trace(M (X))

: (24)
< mintrace(N) st. N=MZ).
T

Remark 3: If the second column and raw are

removed from the matrix in (22), the resulting
inequality, say ‘L1’, is equivalent to (18). Moreover,
if (22) is satisfied, ‘L1’ is always satisfied. Therefore
(18) is always satisfied if (22) is feasible.

Remark 4: For given F, y, the minimal F y in

the trace norm sense is unique. Even in this case,
however, there may exist a lot of Z; y satisfying (20).

Remark 5: Let us think about the trajectories of
P,‘-}N and B,ZN (for i=N,..0) subject to (20).

Because B,y is inserted as an inverse form Pl-;}’ N

in (22), the smaller £, y 1is, the bigger the resulting

F n 1s. Therefore, if the initial values of the two

trajectories, i.e., Pg,,N and Pﬁ’N have the relation
of Pyy<Pjy, then it holds that Py_y
< Pja_l’ y-In the same manner, if Pil+l, N <P ~»then

it holds that Pi}N SP,-,ZN for all subsequent times
i=N-2,.,0.

The RHHC strategy is to solve the finite horizon
output-feedback H, optimal control problem at
current time k& and to implement its first solution, i.e.

”Z|k , then to repeat the procedure at the next time
k+1.

4. STABILITY OF ORHHC

This section indicates that the proposed controller
stabilizes the closed-loop system and guarantees the
H, norm bound. In the following theorem, an
inequality condition on the terminal weighting matrix
Pr is suggested, which plays a crucial role in

guaranteeing the stability of the RHHC.

Theorem 2: (Cost monotonicity) Assume that the
terminal weighting matrix P satisfies the following

inequality

T 1
EyXn v1Co R 0 o
Pf > -V
Ay +ByZy v Co 0 P

-
y EyXy vako E)XEy Ny
Dy + ByZy n11Co || Do + BoZy n+1C0 25)

% { EZZN,NHCO

+E! OF,.
Ay + BOEN,N+1C0:| P

Then Jy ;. n () satisfies the following relation
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Jikan ) 2 Tg v () (26)

Proof: The difference of the costs J;,k a0

~Jik+n () can be written as follows:

Tk kan 1) = T ks n (1)
* * 1
=i hn 1 )+ T v e yp) - 27)

* * 2
=Tk 300 + T jin 4l nip )

where
= 1 1 1
*
Jern 1) = 2 Stevik i Zi v +1> Weerii s
i=0

(28)
* 1 1 1 1
St e N+1,2 TN ) = Sk N Ui Njie > ZN, N1 W N )

17 1
F M N4 L e vt s

(29)
& 2 2 2
Jersn 3 = 2 Skvi Micrie s Ziw s Wiceaw ), (30)
i=0
. 2 2T 2
kN aWicenpe) = Meenpe L e v » (31)

1 1 1 . 2
where Z; N+1o Wk ilke> Mhvilk (respectively, X N+

w,% ik mgﬂ-lk) are minimizing controller dynamics,
maximizing disturbance and corresponding state of
Jigerna () (respectively, Jig. y(p) ). Let us
replace Z}J\,H, i=0,.,N—-1 (respectively, EBV’N 1>
w,fﬂ»lk ) by Eiz’N, i=0,.,N-1 (respectively,

Zn N+ w,lc +ik ) and denote the resulting costs as

follows:
T kan+11000) = Tk na1 () » (32)
* 1
T gorn 1, 2invie) = e pev 12 v (33)
Ti kN 3 = T en 300) (34)

* 2
i sean aWconp) = Tk gan aesni) > (35)

where 7,y 1s the trajectory constructed from 7,

i=0,.,N—-1. Therefore, the

following inequalities are satisfied

2 1
iy and wey

* * 1
S N O + T pens1,2 (s ) < 36)

ik N+ ) + T N 1,2 (s wig )

% * 2
Tk grn 30 + i s 4 Wice N ) 2 a7
Tk ke N300 + g kN4 Ul nie)s

i gm0 ) = T e 3001 )- (38)
Therefore, by (25), we have

e n1 ) = g N (1)
S e+ N1 ) + e n1,2 (e vie)
~Jieen1 30 = S v 4 e vip)

=ik N 11,2 s v ) = s v ,a (e vie)

= St Nk T+ Niie > 2N N-+15 Wit Nk )

T T
F e N L e vk = M N Py s v

-1
T Ey Xy Co R 0|
Mt N1k Ao+ By Xy w1 Co 0 P v

-
E; 2y v+ Eo }

E Xy vn Co
X
Dy + By 2y n+1Co || Do+ By Zn w41 Co

Ey 2y v+ Co
{ o + E{ QF, Ay

Ao+ By Zy v Co
<0,
where  wy, yy is eliminated by applying the
maximizing value of it, i.e. W,y . 0

Remark 6: Theorem 2 says that if it holds that,

* * * *
Jisn vt SSpaenpensthendp vy S Jpgigin-
We can generalize this result as follows. Assume that

* *

B < , >
Jk+k etk p+m - Jk+k Kk » mzl, (39)

for some k . Then, for any k' (0< k< k')

o, <J" .
Jk+k Ktk ptm Jk+k ,k+kf' (40)

The proof of (40) is similar to that of Theorem 2.
This result says that when the monotonicity of the
optimal cost holds once, it holds for all subsequent
times. Using this property, one can develop the block-
shift RHHC.

In the following theorem, it is shown that the
proposed ORHHC guarantees stability of the closed-
loop system.

Theorem 3: (Stability) If the terminal weighting
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matrix Py satisfies the inequality (25), then the

ORHHC stabilizes the system (1) as & goes to
infinity.

Proof: Since the stability of linear systems is not
affected by the value of disturbance, we shall assume

that w w; =0,i 20 to prove the asymptotic stability
of the closed-loop system. If P, satisfies (25),

J;JHN ()2 JZ,k+N+1 () by Theorem 2. Therefore,

* *
S g v ) 2 T s v ()
T *T *
=x Ox +uy Rug + Ty on Men)
*
> Jk+1,k+N+1 (M+1)»

which is the monotonic decreasing property of the
cost function. Since the cost function Jy ., x () is
strictly bounded by zero, we can conclude that
J}:,k +~(m) goes to zero as k goes to infinity. As a

result, x; goes to zero as k goes to infinity. The

proof ends. O
If there exists such a Py satisfying (25), it can be

obtained by the linear programming. With some
efforts, we can transform (25) into the following;

0>W +UZy y V" +VEL yaUT, (41)
where
[_g~! 0 0 0]
o | O E[QE -P, AP, 0
N 0 PfAO —Pf PfDO ’
0 0 D(Z;Pf _Yzl
E, 0
U cr
PsBy | 0
0 Ef

The variable elimination procedure [25] states that
(41) is solvable for some Xy y,; ifand only if

0>Ulwu, and 0>VIwy,, (42)

where U, and V|, are orthogonal complements of

U and V, respectively.

In the following Corollary, a set of linear matrix
inequalities, which is equivalent to (42), is presented
without proof.

Corollary 4.1: Suppose that there exists positive
definite matrices X and X subject to

{—}Jr y2DDT —BR'BT + AXAT  AX 1 .
< 2

xAT -0'x
(43)
T
ET —*1+DT XD D" x4 ET o
<
c’ AT XD O-x+A"x4| CT
(44)

XI>0 45
1}_’()

where denotes  an

(£ ),
complement of [E C]T. Then, there exists a Py

orthogonal

satisfying (25). One of methods to construct Pr

from X and X is as follows:
X Yl . .
Pr= r ,XZTY)H)=SVD(X -X ), (46)
Y Z

where SVD denotes the singular value decomposition.

Theorem 4: (H, norm bound) With zero initial
condition 77, =0, if we apply the dynamic ORHHC
to the system (1), then the H_, norm bound of the
closed-loop system is guaranteed, i.e.,

Zk:o X Q0 tu R,

<y 47
Zw T /4 47
k=0 "k 'k

Proof: Along the state trajectory of (1), we obtain

T
~1o Fo,n o
= z;::() {Jk+1,k+N+1 (Me1) — Sk N )
< Z:=0 {Jk+1,k+N (Ms1) — Sk kN )}

T T %2 KT *
=2:=0{_kuxk —uy’ Ru, +y wy wk}.
Therefore, we obtain (47) with 7, =0. O

5. EXTENSIONS

5.1. Reference trajectory tracking problem
In this section, it is shown that the dynamic output
feedback RHHC can be extended to the reference



Dynamic Output-Feedback Receding Horizon H,, Controller Design 481

trajectory tracking problem such that the output of the
plant should follow arbitrary reference trajectories. It
is assumed that the arbitrary reference trajectories are
given for finite future horizons.

For the tracking problem, the dynamic output-
feedback tracking controllers have the following
structure

C C
Zigivik = AN Zkwik T BinVisik T Fins (51)

C C
Weritk = CinZisipe + Din Yiwik + Gins (52)

and the cost function J ,t: N 18 given as follows

Nl
T
Jirsn = 2 Ak = Virap) OUksipe — YViwin)
i=0

T 2T
+ Uil R Uik = ¥ Wiripe Wi}

T
. Verik =~ Vi) |iX Y } Dr+ifk = Viewik)
Zh+ Nk YTz Zk+ NIk

where yp o, i=0, .., N are given reference

trajectories. Using the state argumentation technique,
we augment the reference trajectories into the state of
(6) such that

Xk+1+ilk = Axk+i|k + Buk+,~|k + DWk+i|k N (53)

Vicvie = Cxilk + Ewp g (54)

— xk+,~|k — A 0 — B
7| = 5 A = 5 B -
Xk+ilk I: 1 j| [0 1:| |:0

c=[c q, B:m.

0

where

Combining (51), (52), (53), and (54) provides a
closed-loop system similar to (11), whose state
consists of Xgijk, Zpyye and 1. The rest of the

work is similar to the procedure of the previous
chapters. Owing to space limitations, we shall omit
the details.

5.2. Problems for time-varying systems

We can also extend the result of this paper to
regulation or tracking problems for time-varying
systems. For time-varying systems, the development
of the output feedback RHHC is also similar to the
procedure of the previous chapters except for the
stability issue. The stability condition for time-varying
systems is as follows:

T 1
o> EZN vnCo {R 0 }
BN 4y + ByZy naiCo 0 Finn

-
T
2 E Xy v (55)
Dy + ByZy y1Co

y E)EZn vCo
Ay + By v 11Co

E)Xy vaEy
Dy +ByZy n+1C0

}FElTQEl,

which is the same as (25) except that we replace the
constant terminal weighting matrix P, with the

time-varying terminal weighting matrices F,,» and

Pk+N+l k and k+1,

respectively. Here we note that for certain time-
varying systems, the terminal weighting matrix
satisfying the condition (55) may not exist all the time
k. In this case, we cannot always guarantee the
stability of the closed-loop system. If we restrict target
systems to periodically time-varying systems, we have
more chance to find the terminal weighting matrix
satisfying the condition (55) and to guarantee the
stability of the closed-loop system. We shall show the
tracking performance for the periodic system by an
example in the following section.

corresponding to time

6. SIMULATION RESULTS

6.1. Regulation problem for time-invariant systems

In this example, we consider the regulation problem
of the proposed controller for the following system,
which is a modified system of Kwakernaak and Sivan
[26].

I 0.1 0 0
Xp+1 = Xy + 2773 + Wk, (56)
0 0495 0.787 0.1

i =1 1]x; +[0.1]wy. (57)

The weighting matrices and initial values for the
regulation problem are as follows; Q=diag[l 1],
R =0.01, the disturbance attenuation level y =1, the

control horizon N =4, the order of dynamic

controller /=2, u3=0 and zy,=[0 O]T. Here

note that the existence of X and X satisfying (43)-
(45) (and thus Py ) is connected with the values of

O,R and y . Hence the design parameters must be
selected to make the set of LMIs (43)-(45) feasible.
Target systems (56) and (57) suffer from
unbounded disturbance. The regulation and tracking
performances of the proposed controller are compared
with those of observer-based ORHHC, where the state
observer is designed  without considering
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Fig. 1. Regulation performance of the proposed
controller (solid-line) and the observer-based
controller (dash-line).

or Dis(ur'banoe ﬂ
: A %"vww&r

@
b

Magnitude

0 20 40 80 80 100 120 140 160 180
iteration

Fig. 2. Tracking performance for the periodic system:
(dash-line) reference trajectory, (solid-line) the
proposed controller, (dotted dash-line) the
observer-based controller.

measurement noise. Simulation results demonstrate
that the proposed controller yields better regulation
performance than the observer-based controller,

especially in the case of transient performance (Fig. 1).

6.2. Tracking problem for periodic systems

For simplicity, we demonstrate the tracking
performance of the proposed controller for the
following simple periodic system

[0.1074+ g, 0.0539 0.02
Xea=| —0.1078  0.1591 0.12 |x;
0.032  -0.104 0.121
- (58)
—0.0013
+| —0.0539 |1y,
| 0.0021

ye=[02 0 —1]x +0.1w, (59)

where g, =0.4sin(0.47k). We chose the simulation
0=10 diag[l 1 1],
uy=0, [I=3 and

follows:
N=4,

parameters as
R=001, y=1,

zo=[0 0 O]T . The performance of the proposed

controller is compared with that of observer-based
receding horizon controller in Fig. 2. We chose the
periodic observer gains through the general Lyapunov
function method so that all the eigenvalues of the
periodic observer systems are within the unit circle.
There are four kinds of situations described in Fig. 2.
For the first 90 iterations, there is no disturbance.
Between the 45th and 50th iterations, the constant
disturbance with magnitude 10 is excited. After the
90th iteration, the uniformly distributed random
disturbances are excited. Between the 130th and 140th
iterations, the magnitudes of disturbances become
bigger due to certain reasons. We can easily know that
the proposed controller yields better performance. We
guess the reason as follows; some amount of
estimation error that always exists in the estimated
state causes tracking performance to be poor.

7. CONCLUDING REMARKS

In this paper, we introduced a dynamic ORHHC for
linear discrete-time systems with unbounded
disturbance, and extended it to tracking problems. By
using a general form of the dynamic controller, the
proposed controller overcame some drawbacks in the
existing observer-based receding horizon controller.
Using the matrix inequality condition on the terminal
weighting matrix, the closed-loop system stability and
the H,, norm bound were guaranteed. It was also

shown that the proposed controller could be easily
extended to tracking problems. Numerical examples
demonstrated how the proposed controller improved
the regulation and tracking performance compared
with the observer-based receding horizon controller.
The results of this paper can be easily extended to
constrained or uncertain systems, which will be our
next topic of research.
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