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Enhancing the Awareness of Decentralized Cooperative
Mobile Robots through Active Perceptual Anchoring

Sherwin A. Guirnaldo, Keigo Watanabe*, and Kiyotaka Izumi

Abstract: In this paper, we describe a system for controlling the perceptual processes of two
cooperative mobile robots that addresses the issue of enhancing perceptual awareness. We
define awareness here as knowing the location of other robots in the environment. The
proposed system benefits from a formalism called perceptual anchoring. Here, perceptual
anchoring enhances the awareness of the system by employing an anchor-based active gaze
control strategy or active perceptual anchoring to control the perceptual effort according to
what is important at a given time. By anchoring we extend the notion of awareness as knowing
what the symbols in the control module represent to by connecting them to the objects or
features in the environment. We demonstrate the present system through a simulation of two
nonholonomic mobile robots performing a cooperative transportation by carrying a cargo to a
target location where there are two other robots moving about. The system is able to efficiently

focus the perceptual effort and thus able to safely carry the cargo to the target position.

Keywords: Awareness, decentralized control, mobile cooperative robots, perception.

1. INTRODUCTION

The success of any autonomous robotic task relies
on the capability of the robot’s perceptual system. In
designing a robot’s perceptual system (e.g., the choice
of sensors), the designer is often influenced by the
nature of the task at hand and often customizes the
robot’s design according to that task. However,
despite careful customization, sensor inherent
limitations remain an issue that must be addressed in
designing autonomous robots. For instance, the
commonly encountered problems of a typical camera
include limited field of view and range, and occlusion,
in which a vision system cannot see through walls or
through the body of other robots and objects. In this
sense, tracking all significant details in the
environment is inconsequential if we would need
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controllers or behaviors to include them in decision
making. A wider range of information will result in
more reliable decision making.

Consider the situation depicted in Fig. 1, which
shows two robots cooperatively transporting an object
to a certain destination. Each of the robots is equipped
with a panned camera system. To implement this
system, it is necessary to identify the problems that
must be addressed at the software level, e.g.,
recognition; each robot must be able to recognize
landmarks to estimate its position and to aid its
navigation system, and must be able to recognize
other moving robots or objects and know their
position in order to avoid collision. However, each of
the robots can only view a fraction of the environment
at any given time. This is dictated by the limitation of
field of view and range of the sensor. In conventional
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Fig. 1. Cooperation in a dynamic environment.
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approaches, if the sensor of one robot is focused on
one particular object the robot will then lose its
awareness of the other objects in the environment.
Therefore, each of the cooperative robots should have
a facility that allows them to be conscious of the
important details of the environment despite the
sensors limitations. This facility should come in
addition to the action processes that are responsible
for producing control commands that directly guide
each robot to achieve its goals. In effect, the designer
must take into consideration that there will be two
processes in each robot (for decentralized cases): one
is the action process and the other is the perceptual
process, which is responsible for prompting awareness
and control to the sensors.

This paper focuses on developing a formalized
approach to awareness, particularly for decentralized
cooperative mobile robots. Specifically, the design of
the architecture used for awareness was highly
influenced by the need for separating the action
processes and perceptual processes while maintaining
some level of interaction between the two. This
requirement is essential in view of the fact that the
entire system is designed for performing various tasks
in addition to monitoring and sensing.

2. COOPERATIVE ROBOTS AND SENSING

Recently, the interest in cooperative robotic systems
has grown significantly (e.g., [1-5]). The primary
reason for this increasing interest is the recognition of
the large number of application domains in which
cooperative robotic systems are applicable, including
the following:

1. Military applications such as
reconnaissance, and de-mining.

2. Industrial applications such as cleaning, earth
moving, and transportation of large objects.

3. Underwater and space exploration applications,
such as pollution monitoring, rock gathering and
search for water on other planets.

surveillance,

Advantages that can be achieved by using
cooperative teams of robots include increased
robustness through redundancy, decreased mission
completion time through parallelism, and a potential
to reduce the individual robot complexity through
heterogeneous robot teams.

Many studies have focused on the development of
cooperative control strategies that enable a group of
robots to work together in many applications. Most of
these studies were focused on designing cooperative
control strategies. In general, control strategies are
classified into centralized, distributed, and fully
decentralized approaches [4]. The centralized
approach is characterized by centralized processing of

data, in which the processing location could be in one
of the team members or in an external machine. All
decision-makings are processed in that location and
commands are sent to each team member from the
processing unit. In the distributed approach, local data
processing is performed at each individual robot but
then information is sent to only one robot that will
take the decisions. In a fully decentralized approach,
each robot takes its own decision based on its own
processing capabilities to process its own data and
data shared by other teammates.

Although sensing is one of the fundamental issues
of robotic systems, very little of the research for
cooperative mobile robotics was aimed to address the
issue of perception and efficient sensing. Parker [6]
proposed to use a team of cooperative robots for the
observation of multiple targets. The focus in [6] was
to develop a distributed control strategy that allows
the robot team to maximize the collective time during
which each target is being observed by at least one
robot team member in an area of interest. The key
issues in this particular application are that of sensor
placement - determining where each sensor should be
located to maintain the targets in view. In addition to
that, sensors have limited range and therefore the use
of multiple sensors dynamically moving over time is
required.

Specifically associated with cooperative mobile
robotics is the need for each robot to take the others
into account. Parker [7] also investigated the issue of
robot awareness of team member actions and its effect
on cooperative team performance by examining the
result of a series of experiments on teams of mobile
robots performing a puck moving mission. The result
of Parker’s study [7] indicates that the impact of
action awareness on cooperative performance is a
function not only on team size and the metric of
evaluation, but also on the degree to which the effects
of actions can be sensed through the world, the
relative amount of work that is available per robot,
and the cost of replicated actions. Moreover, Touzet
[8], who defined robot awareness (for cooperative
mobile robotics) as the perception of the locations and
actions of other robots, proceeded to define four levels
of awareness and studied their effect on cooperative
mobile robot learning. Each level of awareness differs
in regards to the amount of additional information.
Touzet’s results [8] indicated that awareness produced
superior cooperation in a multi-robot observation of
multiple moving targets.

Despite the convincing results shown above, none
of them explicitly tackle the case of awareness for a
cooperative mobile robot as a problem of controlling
the perceptual effort. It appears that their common
approach is to mold the cooperative behavior entirely
to enable better awareness, thus making the
cooperative behavior purely customized for enhancing
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Fig. 2. Decentralized control strategy.

awareness. As stated above, the range of cooperative
robot applications is beyond constructing simple
observation or surveillance systems. In some
applications, such as decentralized cooperative mobile
robots that cooperatively transport a cargo according
to Yang et al. [9,10], there is a need to separate the
process of controlling the perceptual effort from some
action processes of the cooperative behavior, while
maintaining some form of interaction between the
perceptual and action processes so as to allow the
perceptual processes to efficiently conform their
objectives for the needs of the cooperative behavior.
Here, the present awareness is defined as knowing the
position of other robots in the environment. The
notion of awareness is then extended to knowing what
each of the symbols (i.e., symbols in a controller)
means or refers to — that is anchoring symbols to
perceptual data that correspond to the actual objects or
features in the environment. This new notion of
awareness allows each robot to remember the position
of other robots in the environment and does not just
rely on fresh inputs from sensors or information from
other robots passed through a communication channel.

For the needs of separating the perceptual processes
from the action processes, the author developed a
decentralized system for cooperative transportation of
a cargo using two mobile robots. Each agent
controller is composed of two modules, namely the
navigation control module (NCM) and the perception
system module (PSM). The PSM employs an active
perceptual anchoring (APA) strategy [11]. The goal of
employing an APA strategy is to enhance the
perceptual awareness of the system by actively
controlling the perceptual effort of a robot sensor. The
APA is realized by a finite state machine that actively
controls the focus of attention with the help of
anchoring. Conversely, anchoring is the process of
creating and maintaining the correspondence between
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Fig. 3. Details of the perception system module
(PSM).

symbols and sensor data that refer to equivalent
physical objects [12-14]. Anchors will be used here as
internal models of the relevant features and objects in
the environment.

2.1. A decentralized system for cooperative robots
Fig. 2 shows a decentralized system for two
cooperative mobile robots, R; and R,. Two major

components are visible in the figure: the NCM and the
PSM. The NCM is in charge of generating control
commands related to navigation and for cooperation
with its partner robot. On the other hand, the PSM is
in charge of controlling the perceptual effort of the
system and consequently responsible for providing the
awareness capability to each of the cooperative agents
The PSM will generate control commands to change
or track the current focus of attention.

A more detailed look at the PSM is shown in Fig. 3.
The PSM includes an APA element and anchors.
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Anchors are simply data structures so that each anchor
can contain several types of information pertaining to
a particular object (or feature) in the environment. The
NCM is supplied with information from the anchors
by grounding each symbol with its corresponding
objects (or features) in the environment through the
anchors. The NCM has the ability to inform the PSM
of the important objects (or features) at the current
time by passing the needed measures of each
symbol to the PSM. And in response, the PSM will
ensure that those symbol-object connections are
maintained by keeping the information in the anchors
updated. The information in the anchors should be an
accurate estimate of the actual state of those objects
(or features) that are relevant to the NCM.

To update the anchors, the APA part will read each
of the importance values of each anchor and use

them to decide which, among the objects (or features)
in the environment needs to be anchored.
Consequently, the APA part will generate the
necessary control commands to the actuator of the
sensor to physically point the sensor along the
expected direction of the most important object (or
feature) in the environment. While the sensor of the
agent continually sends percepts to the APA part of
the PSM, if it detects one of those objects (or features)
that are valuable to the agent mission, the APA part
will measure its properties (e.g., distance) and send
updates to the corresponding anchor.

Furthermore, the author included a wireless
communication connecting the PSM of the two
cooperative robots to allow the two cooperative agents
to share the information that they are aware of. This
kind of feature is somewhat human like, for instance,
when two or more persons cooperatively transport a
huge and heavy object, each person will usually share
information regarding position of obstacles or position
of the cargo that is otherwise not perceivable by other
persons due to occlusion.

2.2. Active perceptual anchoring
The concept of APA yields the effect of combining

together two popular approaches to perception control.

One is the approach of packing together the perceptual
and action processes into one module (or behavior)
and another is the approach of using information
about the current task to perform an active control of
the agent’s sensor [15-19]. The purpose of the former
is to focus the perceptual effort exclusively on those
features in the environment that are relevant to the
current task. The latter is to actively control the
agent’s sensor that will allow the agent to search for
features in the environment. Such an active control
means selecting a specific algorithm or physically
pointing a sensor in a specific direction; the concept
of the active control was initially presented in
[20] and presently it remains as one of the active

research areas in computer vision [21-23].

The main advantage of employing APA and
anchors in the PSM is that the APA part can use the
information from the anchors to choose which among
the objects (or features) in the environment, will be
the focus of attention and can narrow down the search
process. Each anchor can contain several types of
information that best describe the state of the object
that it represents. Conforming to our definition of
awareness as knowing the position of objects in the
environment, an anchor will contain data such as the
relative orientation and distance from an observing
robot to the object. As in [11], each anchor will also
contain an anchored value on [0, 1] scale, which
measures how recently the anchor was actually
anchored (i.e., updated) to the real object in the
environment. Moreover, each anchor will also contain
an importance value that measures how important

an anchor is to the PSM. For instance if the
importance values in the anchors indicate that a

certain object needs to be monitored at the present
time, the APA part can simply use the estimated
values of properties (e.g., relative position and
distance) stored in the corresponding anchor to
approximate the current location of that object in the
environment, making the perceptual effort of
searching and tracking the object more efficient.

Moreover, the PSM will receive a needed
measure for each symbol from the NCM. The needed
measure is a gauge that tells which of the objects is
vital to the current state of the NCM; generally the
higher the needed value the more valuable it is for the
current state of the NCM. By allowing the NCM to
pass the needed measure to the PSM and by making
the important measure dependent on the needed
measure, the perceptual effort generated by the PSM
will be made relevant to the current state of the NCM.
The importance measure is computed based on the
needed measure and the anchored measure.

In the preceding section the author introduced the
cooperative mobile robot platform, in which the
author considered two mobile robots that
cooperatively transport a cargo by carrying it to a
desired destination (Fig. 1 will give a good illustration
of the scenario). Moreover, the working environment
is cluttered with two other moving robots. Therefore,
each cooperative agent is required to have the ability
to avoid collisions with other robots working within
the same environment. Here, if the NCM of a
cooperative agent is not in obstacle avoidance mode,
the PSM will select the anchor with the highest
importance value to be the focus of attention. For a

given anchor a in S, where S is a set of anchors,
and representing the important measure of a as

important(a) = needed(a)[1 — anchored(a)], (1)
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where needed(a) is the needed measure of a and
anchored(a) is the anchored value of a.

In contrast, if the NCM is in obstacle avoidance
mode, the PSM will only use the needed measure
from the NCM to select the next focus of attention.
The NCM must be supplied with fresh and accurate
information relating to the most threatening object in
the environment. In our simulation study, the needed
value for the non threatening object is set to 0.5 and
1 if it is very close. Moreover, the anchored value
for the newly updated anchor is set to 1; otherwise it
is reduced by 1 percent at every time step.

Shown in Fig.4 is a finite state machine that
represents the processes of the APA part of the PSM.
The finite state machine generates a sensor control
command that can actively point the panned camera to
the (new) fixation and will update the information in
the anchors with percepts from the sensor. The details
of each process are given below.

1. Select: choose an anchor x to become the new
focus of attention of the panned camera. Set the
fixation to the expected relative orientation of x.
If the anchored level exceeds above from a
given threshold, exit via GE (good estimate);
otherwise, exit via the non-GE transition.

2. Scan: perform a visual scan to explore the portion
of the space where x could be located. In our
simulation,  exploration is conducted by
augmenting a search factor to the expected
orientation of x, and set the fixation to this value.
Exit when one of the following occurs:

(a) If an object is detected along the TZ (tracking
zone) that matches x, set the fixation of the
camera to the relative orientation of the object
and exit via f-in-TZ (found in TZ);

(b) If an object that matches an anchor other than
x is detected along the TZ, exit via nf-in-TZ
{not found in TZ),

(c) If the physical scan is completed, exit via the
SC (scan complete).

3. LookTo: turn the camera to the current fixation:

(a) If an object that matches x appears within
the TZ, exit via f-in-TZ;

{b) If an object that matches an anchor other than
x appears within TZ, exit via nf-in-TZ;

(c) When the desired orientation of the camera
has been achieved and no object is detected
that matches x , exit via PA (position
achieved).

4. Anchor: measure the (relative) orientation and
distance of the object and update the x anchor
associated with the object; and select a new focus.

5. Serendipitous anchoring: if an object other than the
one represented by x is in TZ, measure its
(relative} orientation and distance and update the
corresponding anchor; and continue to search x.

6. Lost or Occluded: if either Scan or LookTo has
been completed without finding the object that x
represents, mark x as lost and proceed via LG to
select a new focus of attention.

3. COOPERATIVE ROBOT PLATFORMS

The kinematic models of two mobile robots shown
in Figs. 5 and 6 are for the follower robot and the
leader robot respectively. The motion of the robot’s
body is controlled by a differential wheel drive. Much
of the platform is tailored from the system introduced
by [9,10] with minor changes. Here, the main
difference between the follower and the leader robots
is in the construction of the hands. The follower
robot’s hand is flexible along its length such that its
length can stretch or shrink, while the leader robot’s
hand is rigid. Both hands are assumed to be firmly
hooked with the cargo. Moreover, contrary to the
system introduced in [9,10], here, both hands are not
actuated and can freely rotate along the reference
point O. This means that the orientation and position
of the cargo will depend on the position of the two
cooperative robots and the distance between them.
Thus, the length of the follower’s hand depends only
on the distance between the reference points of the
two cooperative robots.

Both the leader and follower robots are equipped
with panned cameras as the primary external sensors.
For simplicity, the sensor region is modeled as a
triangle, in which R represents the range of the
sensor, p represents the field of view of the sensor

and o, represents the speed of panning the camera.

Once an object’s reference point is within the area of
the triangle, the sensor is assumed to be able to sense
and retrieve information regarding that object. In the
event that two objects are inside the triangle area, the
one closest to the observing robot is assumed to be
perceivable and the other one is not; this event is
called occlusion. Furthermore, B and / represent
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Fig. 5. Kinematic model of the follower robot.
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Fig. 6. Kinematic model of the leader robot.

the relative orientation and relative distance from the
observing robot to an object, respectively.

3.1. Kinematic model
Local coordinate systems ZX,(0O-X,Y,) and
2p(0—XpgYp) are set fixed to the frames of the

leader
]T

follower and robots

A

respectively. Let

X Ao =[5 41V 4o] represent the motion of the

follower robot in X, and similarly, let
B Bo = 2z BO,B y BO]T represent the motion along
space Xp for the leader robot. We define

T T
04=[04,04] and @p=[wp,0z] as the
angular velocities of the wheels of the follower and

leader robots respectively. The kinematic equations
for the follower robot are shown below:

—14 .
W4= AA X Ado>

4 1 ks , )
1 —h/s

where 2k is the tread and s is the offset of the
steering axis from the axie of the wheel.

Equations for the leader robot can be derived easily
in the form similar to the above equations. Similar to
[10], an additional coordinate system

24, (0—-X4,Y,4,), is set fixed to the hand and point
O of the follower robot and the motion along this
AOJ‘CAo _ [onAoaAo )-}AO]T _ This
additional frame is used for generating cooperation
and avoidance control for the follower robot.
Transforming of the motion from X ,, space to X,

space is given as

space is performed according to:

4. 4 .

XAdo = AoRonAm
A _ cos(a ) —sin(ay) (3)
407 "l sin(oy)  cos(ay) |

where a, denotes the angle between X, and

X4, axes.

3.2. Sub-controllers

Although it is not our primary goal to introduce a
novel control system for the cooperative platform
considered here, it is still necessary for us to design
the inner makings of the NCM as well as the panning
control system in the PSM so that we can test the
system in simulation. Thus, the author considers only
simple controllers and makes no claims of the novelty
and efficiency of such controllers. Figs. 7 and 8 show
the block diagrams of control systems for the follower
and leader robots respectively. In the latter, the
controller is composed of two sub-components,
namely the obstacle avoidance controller and the
trajectory following controller. At any given time,
only one of these two sub-controllers will be active; it
will switch between sub-controllers depending on the
situation. Alternatively, the follower robot’s controller
is composed of an obstacle avoidance sub-controller
and a hand-length controller.

3.2.1 Obstacle avoidance

We use a Mamdani type fuzzy logic (FL) controller
[24] for the leader’s obstacle avoidance. The
controller basically generates the leader avoidance
vector, v,p. This vector is parallel and in-line to the
segment connecting O and the perceived location of
the reference point of an obstacle. The antecedent part
of the fuzzy rules takes the membership function for
the relative distance I (see Fig. 9) to an obstacle.

The leader avoidance vector v,p is transformed into
x and y components along the space X (see Fig
6). Accordingly, these vector components will dictate
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the motion of the leader robot. Similarly, the obstacle
avoidance controller of the follower robot generates

an avoidance vector, v,, as shown in Fig. 5. This
vector is also resolved into x and y components

along the coordinate X, . But here, only the x
component is used to generate the avoidance motion
because the y component will cause an error to
occur with the effort of the hand-length controller.
Moreover, the FL-based controller output is generated
using a centroidal calculation, which returns the center
of area (COA) under the curve of a membership
function. The COA can be computed as

z?:l A%

COA=""" 4)
A

=11
where 4; is the area of the triangle 7, ¥; is its
COA, and n is the number of rules.

3.2.2 Hand controller
The hand-length controller of the follower robot
produces the hand-length control vector, v, along

the x axis of X, . Similarly, the hand-length

controller consists of a Mamdani type FL controller
[24], where the antecedent part of the rules has two
parts, taking the memberships for the length error

e =1 josived —'gervar @nd the length error rate ¢

(see Fig. 10), where ['.s and !',... denote the
desired and actual length of the follower robot’s hand
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Fig. 9. Membership functions and rules for the
avoidance behavior.
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Fig. 10. Membership functions and rules for the
hand-length controller.

respectively. The two inputs are combined using the
AND operator and the crisp output is generated using
centroidal calculation. Fig. 10 shows further details;
(a) and (b) indicate the input membership functions

for ¢, and ¢; respectively; (c) shows the output
membership function for vy ; and (d) displays the

rules of the controller. For the hand length error ¢,

five ~memberships are assigned, such that
e =-0.002 , ¢,=-0.0015, ¢;5=0.0015, and
¢4 =0.002. A negative value of ¢ tells that the
current length of the hand is longer than the desired
value; “Llong” represents the higher end of being long
“Mlong” signifies medium long and “Z” stands for
zero. On the other hand, a positive ¢; tells that the
current length of the hand is shorter than the desired
value, “Mshort” stands for medium short and “Lshort”
is the higher end of being short. For the rate ¢, , five
memberships  are

assigned with ¢;=-0.1 ,
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Fig. 11. Kinematic control the

parameters  to
follower robot’s panned camera.

é12 =-0.025 . él3:0'025 ) and él4=0.1 . The

memberships are labeled accordingly; “FN” means
fast negative, “MN” stands for medium negative, “Z”
signifies zero, “MP” indicates s medium positive, and
“FP” means fast positive. Conversely, five
memberships for the output are assigned with
i=-0.1334 , j=-0.0667 , k=-0.0167 |,

[=0.0167 , m=0.0667 , and »n=0.1334 . The
output memberships are labeled as follows; “F—" for
fast but negative, “M —” indicates medium speed but
negative, “Zero” stands for zero speed, “M+" means
medium speed but positive, and “F+” for fast and
positive.

3.2.3 Sensor motion control

Due to the similarity of functions, the controllers
for the two cooperative robot’s panned cameras were
constructed in the same manner. As with the hand-
length controller, the author used a Mamdani type FL
[24] to produce a coordinated panning action for each
camera of the follower and leader robots.
Shown in Fig. 11 are the kinematic parameters of the
follower robot that are relevant for controlling its
panned camera. Attached to the frame of the camera is
a local coordinate space in which the axis X~ is in-
line with the line of sight of the camera. Based on
2., the orientation of the perceived or believed

location of a fixation target is denoted as e Jixation * In

particular, this parameter is called the orientation error
of the camera. The coordinate X, is also shown to
represent the orientation and motion of the main body

of the follower robot. The angular speed of the camera

relative to the main body of the follower robot is
denoted as A(oc. Moreover, Fig. 12 presents the

details of the FL-based panned camera controller,
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Fig. 12. Membership functions and rules for sensor
control.

where in (a) the membership function of the error

€0 fration is shown and (b) depicts the membership

function for the main body’s angular speed, g ,. Both

memberships for ey fiation and ¢, are used as

inputs in the antecedent part of each rule and
combined using the AND fuzzy operator. In (c) the

output membership function is shown; the rules will

A

produce values for oc through centroidal

calculation method. Moreover, the input ¢y, .

divided into 5 memberships such that 6,=1.0,
6,=15, 0;=30, 6,=9325, 05=1850,
05 =26925 , 05;=3570 , 0g=3585 , and
6y =359.0. The memberships for the input variable

€9

~are labeled as follows; “c” means close,

% fixation
“mL” signifies medium left-side, “fL” stands for far
left-side, “fR” indicates far right-side, and “mR”
means medium right-side. As well, the memberships
for the input variable g, are labeled as follows;

“CW” means clockwise rotation, “slow” indicates
slow or no rotation and “CCW” means counter
clockwise rotation. Moreover, the output memberships
are labeled in this way; “Fcw” means fast clockwise
motion, “Mcw” refers to medium clockwise motion,
“S” signifies slow, “Mccw” denotes medium counter
clockwise motion, and “Fccw” means fast counter
clockwise motion. Note here that the target or fixation
information comes from either LookTo or the Scan
process of the active perceptual anchoring.

3.2.4 Trajectory following
To achieve the goal of transporting the cargo to the
target destination, the leader initiates the translational
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motion to the target. In particular, it is assumed that
the leader can readily receive a desired trajectory

X Bod =1 Xpod> yBod]T coming from a hypothetical

planner [9, 10]. We simply used a radial basis function
neural network (RBFNN) [25] with Gaussian
activation function to generate a trajectory following
motion. The inputs to the NN are the trajectory

following errors, e, and e, , their corresponding

rate, ¢, and éy > and the leader robot orientation

eB , where e, =XBod ~ Xaact and €y = YBod ~ Yaact
denote the errors between the desired trajectories
(XBodsVBog) and the actual leader robot position

(Xgact> Yaaer ) - The RBFNN outputs a velocity vector

By Bo along the space Z;.

To train the NN, the author used a Genetic
Algorithm (GA) [26,27] to minimize the error of
following a trajectory. During the GA optimization,
each fitness is tested on a training trajectory. The
training trajectory has enough complexity so that the
outcome of GA will give the RBFNN enough capacity
to follow any given trajectory with minimal error. The
fitness function is given as:

T; max

f=Y Wet+Wyel+P, (5)

'max
t=0

where T, is the amount of time the mobile robot

will try to follow the training trajectory, P, =1 if

Vma

B

ip, exceeds the linear velocity limit and

P

), =0 otherwise. The weights W, and W, are
max
introduced to balance the effect of position errors

relative to the penalty Pvmax' Both of the weights,

W, and W, were set empirically at 100. The GA

parameters were initialized accordingly: the
population size is 100, the crossover rate is 0.6
(uniform), the mutation rate (i.e., probability of
mutation) is 1, the selection criteria are based on
selecting the best 10 individuals, and the generation
time is 15,000.

4. SIMULATION STUDY

We conducted a simulation test to demonstrate how
the proposed concept works. We used a small sized
version of the cooperative platform discussed in the
previous section. The wheel radius is set to 0.065 [m];
the offset distance of the reference point from the
wheel axis s, is set to 0.08 [m]; # is 0.06 [m]; the
sampling width is set to 0.02 [s]; and the linear
velocity of each cooperative robot is limited up to 0.2

10 T T T T ¥ T T T T

[$)]
T

Y — direction [m]
=

o
=

5
X - direction [m]

Fig. 13. Desired trajectory for the leader robot and
the trajectories for the two other robots
working in the environment. Starting
positions are marked with a circle.

[m/s], while the maximum panning velocity for the
camera is set to 1.2 [rad/s]. Moreover, aside from the
two cooperative robots there are two other robots
namely O1 and O2 operating in the same environment
Ol and O2 move along their own trajectories (as
shown in Fig. 13) at a speed of 0.15 [m/s].

Other details such as the field of view of the panned
camera p, is set to 15 [degrees], and the range R is

set to 10 [m]; this is sufficient to exclude the range as
a problem source. With this, the problem is reduced to
a limited field of view and occlusion. The initial
length (or desired length) of the follower’s hand and
the leader’s hand is set to 2s [m]. We assume a cargo
having a square base with size 2s[m]x2s[m].

The main task of the two cooperative robots is to
transport the cargo to the desired location via a
predefined trajectory. The trajectories for the leader
and the two other robots are shown in Fig. 13. The
leader robot task is to follow the trajectory and avoid
collisions with other robots working in the same
environment. It is assumed that the two other robots
are blind so that they don’t have any ability to avoid
collisions, i.e., they will just go straight and follow
their trajectories. In contrast, the follower robot is
designed to have the ability for self and cargo
preservation, i.e., it is capable of performing collision
avoidance not just for its own body but also for the
cargo as well. Moreover, the follower robot is
designed to cooperatively carry the cargo safely by
maintaining a safe hand length. Unlike the case of the
leader robot’s hand, the hand of the follower robot is
capable of increasing and decreasing its length.
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Fig. 14. The leader’s eye-view. A and B show the anchored and actual values of distance and orientation. C and
D on the other hand show the plot of the anchored measure for O1 and O2, respectively.

5. RESULTS AND DISCUSSION

The simulation results can be shown in two views
on how each of the cooperative robots sees and
remembers the states of the relevant features in the
environment. Information in the anchors and their
actual equivalent were plotted against time. At any
given time, this information in the anchors is
responsible for defining the awareness of each
cooperative robot.

With respect to the leader robot’s eye-view, the
results are shown in Fig. 14, where (a) and (b) indicate
the anchored relative distance and orientation for O1
and O2. On the other hand, (¢) and (d) show the
anchored values for robots O1 and O2 respectively for
the entire simulation time. The results demonstrate
that before hitting the ninth second mark, the
perception system evenly anchored both O1 and O2,
that is, the leader robot’s attention was alternately
shifted to O1 and O2 or the camera swings back and
forth between O1 to O2. Soon after Ol came very
close, the avoidance module of the leader robot was
activated. The activation resulted in the assignment of

a higher needed value for the anchor Ol. This in
turn resulted in a full tracking attention for O1; its
anchor contents were updated constantly for the time
being while O2 was left unattended for approximately
3 seconds. When the leader robot and O1 parted, O1
swung to the south of the leader robot, which later
resulted in an occluded view (i.e., the leader robot was
unable to visually track O1) due to the presence of the
cargo and the follower robot in the direction in which
Ol could be found. The anchor for O2 was updated
again once the close encounter with O1 was over, and
the leader robot could safely track O2.

With respect to the follower robot’s eye-view, the
results are shown in Fig. 15, where (a) and (b) show
the content of the anchors for O1 and O2 respectively
for the entire simulation time, and (c) and (d) show
the anchored values for Ol and O2 respectively.
The result tells us a different story with what the
leader robot saw. The plots indicate that, at most of
the entire simulation times, O2 is not visible for the
follower robot. O2 starts to appear only near to the
end of the simulation time (i.e., on the 26th seconds
mark). This happens because O2 started up from north
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Fig. 15. The follower’s eye-view. A and B indicate the anchored and actual values of distance and orientation. C
and D on the other hand show the plot of the anchored measure for O1 and O2, respectively.

relative to the place where the follower robot began
(see Fig. 13), and because the follower robot follows
the leader robot it cannot see up north due to
occlusion generated by the presence of the leader
robot in that direction. Alternatively, Ol is visible to
the follower robot throughout the simulation time due
to the fact that no physical object can obstruct the
view of the follower robot in any direction along the
southern part of the environment.

Here, the two cooperative robots can broadcast to
each other their position and the anchors. Specifically,
if every time Ol or O2 is lost (or occluded), a
cooperative robot will use the information available
from the anchor of the other cooperative robot. This
technique could result in more highly efficient
perception control.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a formalized
approach for controlling the perceptual effort to
enhance the awareness of two decentralized mobile
robots designed for cooperative transportation of a
cargo object, where the two cooperative mobile robots

were equipped with panned cameras that had highly
limited field of view and thus each of the cooperative
agents could only focus on a small fraction of their
environment at any given time. In general, this
inherent limitation is further aggravated by occlusion;
each cooperative agent is unable to see through the
cargo and its partner. These problems can severely
affect the awareness of each agent and will make the
task practically difficult to implement. For each
cooperative agent to be aware of the state of its
environment, every agent must be able to efficiently
control its perceptual effort. Our approach to
awareness was based on active perceptual anchoring
(APA). Through APA each cooperative agent was able
to control its perceptual effort according to the needs
of the task at hand. We defined awareness as knowing
the position of the other robots in the environment and
implemented it through the use of anchors. We
demonstrated the approach through a simulation of
two cooperative mobile robots that cooperatively
transport cargo to a certain destination through a
predefined trajectory, in which the two mobile robots
cooperatively carrying the cargo move along a
trajectory and avoid collisions with other robots while
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moving towards the target destination. Our simulation
results demonstrated that our approach could work
and was potentially feasible.

One area in which our approach to awareness for
decentralized cooperative mobile robots can be
improved is in the implementation of the dynamic part
of anchoring. In the present system, the dynamic part
of anchoring is not implemented and because of this
each cooperative agent has no ability to extrapolate
any information from the previously received data. By
implementing or adding a dynamic part to anchoring,
each agent will be able to simulate and predict the
changes in state of one or more objects (or features)
while the perception system is busy observing another
object in the environment. Additional benefits of this
enhancement can be well observed if the number of
other robots working in the same environment is
much higher than what we have considered here. As
the number of robots moving about increases, the
number of times that each of these objects will be
anchored by a cooperative agent decreases. Therefore
it is beneficial to add prediction capabilities in the
anchoring process in order to have better awareness in
a busier environment.
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