Robust Predictive Feedback Control for Constrained Systems

  • Published : 2004.12.01

Abstract

A new method for the design of predictive controllers for SISO systems is presented. The proposed technique allows uncertainties and constraints to be concluded in the design of the control law. The goal is to design, at each sample instant, a predictive feedback control law that minimizes a performance measure and guarantees of constraints are satisfied for a set of models that describes the system to be controlled. The predictive controller consists of a finite horizon parametric-optimization problem with an additional constraint over the manipulated variable behavior. This is an end-constraint based approach that ensures the exponential stability of the closed-loop system. The inclusion of this additional constraint, in the on-line optimization algorithm, enables robust stability properties to be demonstrated for the closed-loop system. This is the case even though constraints and disturbances are present. Finally, simulation results are presented using a nonlinear continuous stirred tank reactor model.

Keywords

References

  1. Computers Chem. Engng. v.19 no.3 A multi-objective design algorithm: Application to the design of SISO control systems A. Abbas;P. Sawyer https://doi.org/10.1016/0097-8485(95)00011-G
  2. System and Control Letters v.18 On linear programming and robust model predictive control using impulse-responses J. Allwright;G. Papavasiliou https://doi.org/10.1016/0167-6911(92)90020-S
  3. International Journal of Control v.68 Robust model predictive control of stable linear systems T. Badgwell https://doi.org/10.1080/002071797223343
  4. Proc. 37th IEEE Conference on Decision and Control Reducing conservativeness in predictive control of constrained system with disturbances A. Bemporad
  5. Proc. American Contr. Conf. Robust model predictive control P. Campo;M. Morari
  6. Multiobjective Decision Making: Theory and Methodology V. Chankong;Y. Haimes
  7. Feedback System: Input-Output Properties C. Desoer;M. Vidyasagar
  8. European Journal of Operational Research v.24 no.2 On efficient sets in vector maximum problems-A brief survey T. Gal https://doi.org/10.1016/0377-2217(86)90048-2
  9. Automatica v.25 no.3 Model predictive control: Theory and practice.A survey C. Garcia;D. M. Prett;M. Morari https://doi.org/10.1016/0005-1098(89)90002-2
  10. AIChE J. v.39 no.8 Robust stability analysis of constrained l1-norm model predictive control H. Genceli;M. Nikolaou https://doi.org/10.1002/aic.690391206
  11. IEEE Trans. Autom. Contr. v.36 no.10 Linear systems with state and control constraints: The theory and application of maximal output admissible E. Gilbert;K. Tan https://doi.org/10.1109/9.83532
  12. Proc. of the American Contr. Conf. Maximal output admissible sets for discrete-time systems with disturbance inputs E. Gilbert;I. Kolmanovsky
  13. Ind. Eng. Chem. Res. v.38 no.12 Shaping timedomain response with discrete controllers L. Giovanini;J. Marchetti https://doi.org/10.1021/ie990037w
  14. ISA Transaction Journal v.42 no.2 Predictive feedback control L. Giovanini https://doi.org/10.1016/S0019-0578(07)60127-X
  15. Automatica v.32 no.10 Robust constrained model predictive control using linear matrix inequalities M. V. Kothare;V. Balakrishanan;M. Morari https://doi.org/10.1016/0005-1098(96)00063-5
  16. Automatica v.34 no.12 Linear quadratic feasible predictive control B. Kouvaritakis;J. Rossiter;Cannon, M. https://doi.org/10.1016/S0005-1098(98)80012-5
  17. IEEE Trans. Autom. Contr. v.45 no.12 Efficient robust predictive control B. Kouvaritakis;A. Rossiter;J. Schuurmans https://doi.org/10.1109/9.871769
  18. Computers Chem. Engng. v.18 no.1 Tuning of model predictive controllers for robust performance J. Lee;Z. Yu https://doi.org/10.1016/0098-1354(94)85020-8
  19. Automatica v.33 no.5 Worst-case formulation of model predictive control for system with bounded parameters J. Lee;Z. Yu https://doi.org/10.1016/S0005-1098(96)00255-5
  20. Automatica v.30 no.9 A contraction property for state feedback design of linear discrete-time systems A. Malmgrem;A. Nordstrom https://doi.org/10.1016/0005-1098(94)90016-7
  21. IEEE Trans. Autom. Contr. v.35 no.5 Receding horizon control of nonlinear systems D. Mayne;E. Michalska https://doi.org/10.1109/9.57020
  22. Ind. Eng. Chem. Res. v.27 no.5 Predictive controller design by principal component analysis P. Maurath;A. Laub;D. Seborg;D. Mellichamp https://doi.org/10.1021/ie00079a020
  23. Chem. Eng. Sci. v.47 no.4 An adaptive nonlinear predictive controller J. Morningred;B. Paden;D. Seborg;D. Mellichamp https://doi.org/10.1016/0009-2509(92)80266-F
  24. IEEE Trans. Autom. Contr. v.43 no.9 Constrained linear quadratic regulation P. Scokaert;J. Rawlings https://doi.org/10.1109/9.704994
  25. Theory of Multiobjective Optimization Y. Sawaragi;H. Nakayama;T. Tanino
  26. Subspace Identification for Linear System P. Van Overschee;B. De Moor
  27. AICHE v.41 no.9 Performance bounds for robust quadratic dynamic matrix control with end condition P. Vuthandam;H. Genceli;M. Nikolaou https://doi.org/10.1002/aic.690410908
  28. Computers Chem. Engng. v.14 no.4-5 Robust model predictive control with hard constraints E. Zafiriou https://doi.org/10.1016/0098-1354(90)87012-E
  29. IEEE Trans. on Automatic Control v.40 no.10 Stability of model predictive control with mixed constraints Z. Zheng;M. Morari https://doi.org/10.1109/9.467664