Fabrication of Multimode Polymeric Waveguides by Hot Embossing Process: Effect of Sidewall Roughness on Insertion Loss

  • Yoon, Keun Byoung (Optical Interconnection Team, Electronics and Telecommunications Research Institute)
  • Published : 2004.10.01

Abstract

We have fabricated a polymeric waveguide by using a hot embossing technique and have investigated its propagation loss. The replication of waveguide channels through the use of a hot embossing technique is of interest as a single-step process that could deliver surface roughnesses far smaller than the wavelength. We have evaluated experimentally that the sidewall roughness has a dominant effect on insertion losses of the multimode polymeric waveguide. The propagation loss of the waveguide decreased dramatically upon decreasing the sidewall roughness of the channel. We have confirmed that the preparation of waveguides having nanometer-scale sidewall roughness and 0.1 dB/cm propagation loss is possible when using the hot embossing technique.

Keywords

References

  1. J. Lightware Technol. v.14 L. Eldada;C. Xu;K. M. T. Stengle;L. W. Shacklette;J. T. Yardley https://doi.org/10.1109/50.507948
  2. Electron. Lett. v.33 G. Fischbeck;R. Moosburger;C. Kostrezewa;A. Achen;K. Petermann https://doi.org/10.1049/el:19970307
  3. Opt. Mater. v.21 U. Streppel;P. Dannberg;C. Wachter;A. Brauer;L. Frohlich;R. Houbertz;M. Popall https://doi.org/10.1016/S0925-3467(02)00186-6
  4. Macromol. Res. v.12 K. B. Yoon https://doi.org/10.1007/BF03218402
  5. Electron. Lett. v.33 R. Yoshimura;M. Hikita;S. Tomaru;S. Imamura https://doi.org/10.1049/el:19970841
  6. Appl. Opt. v.34 M. Kagami;H. Ito;T. Ichikawa;S. Kato;M. Matsuda;N. Takahashi https://doi.org/10.1364/AO.34.001041
  7. J. Light wave Technol. v.19 V. Van;P. P. Absil;J. V. Hryniewiez;P.-H. Ho https://doi.org/10.1109/50.964074
  8. J. Vac. Sci. Technol v.B20 S. J. Choi;K. Djordjev;R. C. Tiberio;S. T. Ho
  9. Electron. Lett. v.36 S. Lehmacher;A. Neyer https://doi.org/10.1049/el:20000742
  10. IEEE Photonics Tech. Lett. v.15 C.-G. Choi;S.-P. Han;B.C. Kim;S.-H. Ahn;M.-Y. Jeong https://doi.org/10.1109/LPT.2003.811139
  11. Japan. J. Appl. Phys. v.43 K. B. Yoon;C.-G. Choi;S.-P. Han https://doi.org/10.1143/JJAP.43.3450
  12. Microsyst. Technol. v.4 M. Heckele;W. Bacher;K. M. Muller https://doi.org/10.1007/s005420050112
  13. J. Lightwave Technol. v.15 F. Ladouceur https://doi.org/10.1109/50.588676
  14. J. Lightwave Technol. v.7 C. H. Henry;G. E. Blonder;F. Kazarinov https://doi.org/10.1109/50.39094
  15. IEE Optoelectron. v.141 F. Ladouceur;J. D. Love;J. J. Seden https://doi.org/10.1049/ip-opt:19941085
  16. Microelectron. Eng. v.67-68 S. Park;C. Padeste;H. Schift;J. Gobrecht https://doi.org/10.1016/S0167-9317(03)00078-9