References
- J. Biol. Chem. v.274 The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin Aparicio, J. F.;A. J. Colina;E. Ceballos;J. F. Martin https://doi.org/10.1074/jbc.274.15.10133
- Chem. Biol. v.7 A complex multienzyme system encoded by five polyketide synthease genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis Aparicio, J. F.;R. Fouces;M. V. Mendes;N. Olivera;J. F. Martin https://doi.org/10.1016/S1074-5521(00)00038-7
- Appl. Microbiol. Biotechnol. v.61 Polyene antibiotic biosynthesis gene clusters Aparicio, J. F.;P. Caffrey;J. A. Gil;S. B. Zotchev
- BioChim. Biophys. Acta v.864 How do the polyene mactolide antibiotics affect the cellular membrane properties? Bolard, J. https://doi.org/10.1016/0304-4157(86)90002-X
- Chem. Biol. v.7 Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455:analysis of the gene cluster and deduction of the biosynthetic pathway Brautaset, T.;O. N. Sekurova;H. Sletta;T. E. Ellingsen;A. R. Strom;S. Valla;S. B. Zotchev https://doi.org/10.1016/S1074-5521(00)00120-4
- Chem. Biol. v.9 Hexaene derivatives of nystatin produced as a result of an induced rearrangement within the nysC polyketide synthease gene in Streptomyces noursei ATCC11455 Brautaset, T.;P. Bruheim;H. Sletta;L. Hagen;T. E. Ellingsen;A. R. Strom;S. Valla;S. B. Zotchev https://doi.org/10.1016/S1074-5521(02)00108-4
- Chem. Biol. v.8 Amphotericin biosynthesis in Streptomyces nodosus; deductions from analysis of polyketide synthase and late genes Caffrey, P.;S. Lynch;E. Flood;S. Finnan;M.Oliynyk https://doi.org/10.1016/S1074-5521(01)00046-1
- Microbiology v.148 The candicidin gene cluster from Streptomyces griseus IMRU 3570 Campelo, A. B.;J. A. Gil https://doi.org/10.1099/00221287-148-1-51
- Appl. Microbiol. Biotechnol. v.58 Antifungal antibiotics Gupte, M.;P. Kulkarni;B. N. Ganguli https://doi.org/10.1007/s002530100822
- Chem. Biol. v.8 Engineered biosynthesis of novel polynes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis Mendes, M. V.;E. Recio;R. Fouces;R. Luiten;J. F. Martin;J. F. Aparicio https://doi.org/10.1016/S1074-5521(01)00033-3
- Mol. Microbiol. v.20 Bacterial cytochromes P-450 Munro, A. W.;J. G. Lindsay https://doi.org/10.1111/j.1365-2958.1996.tb02632.x
- Mol. Microbiol. v.5 Occurrence and biological function of cytochrome P450 monooxygenases in actinomycetes O'Keefe, D. P.;P. A. Harder https://doi.org/10.1111/j.1365-2958.1991.tb02139.x
- J. Comput. Aided. Mol. Des. v.14 Conformational properties of amphotericin B amide derivatives - impact on selective toxicity Resat, H.;F. A. Sunger;M. Baginski;E. Borowski;V. Aviyente https://doi.org/10.1023/A:1008144208706
- A laboratory Mannual Practical Streptomyces Genetics Kieser, T.;M. J. Bibb;m. J. Buttner;K. F. Chater;D. A. Hopwood
- J. Microbiol. Biotechnol. v.10 New Polyene Macrolide Antibiotics from Streptomyces sp. M90025 Seo, Y. M.;K. W. Cho;H. S. Lee;T. M. Yoon;J. H. Shin
- Curr. Opin. Microbiol. v.4 Combinatorial biosynthesis of antimicrobials and other natural products Rodriguez, E.;R. McDaniel https://doi.org/10.1016/S1369-5274(00)00246-0
- Microbiology v.146 Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC11455 Zotchev, S.;K. Haugan;O. Sekurova;H. Sletta;T. E. Ellingsen;S. Valla https://doi.org/10.1099/00221287-146-3-611
- Nat. Biotechnol. v.21 A genomics-guided approach for discovering and expressing cryptic matabolic pathways Zazopoulos, E.;K. Huang;A. Staffa;W. Liu;B. O. Bachmann;K. Nonaka;J. Ahlert;J. S. Thorson;B. Shen;C. M. Farnet https://doi.org/10.1038/nbt784