Isolation of Cryptic Polyene Hydroxylase Gene in Rare Actinomycetes via Polyene-specific Degenerate PCR.

Polyene 특이적인 PCR에 의한 희소 방선균 유래 Cryptic Polyene Hydroxylase 유전자의 분리

  • Published : 2004.09.01

Abstract

The polyene antibiotics including nystatin, pimaricin, amphotericin and candicidin are a family of most promising antifungal polyketide compounds, typically produced by rare actinomycetes species. The biosynthetic gene clusters for these polyenes have been previously investigated, revealing the presence of highly homologous biosynthetic genes among polyene-producers such as polyketide synthase (PKS) and cytochrome P450 hydroxylase (CYP) genes. Based on amino acid sequence alignment among actinomycetes CYP genes, the highly-conserved regions specific for only polyene CYP genes were identified and chosen for degenerate PCR primers, followed by the PCR-screening with various actinomycetes genomic DNAs. Among tested several polyene non-producing actinomycetes strains, Pseudonorcardia autotrophica strain was selected based on the presence of PCR product with polyene-specific CYP gene primers, and then confirmed to contain a cryptic novel polyene hydroxylase gene in the chromosome. These results suggest that the polyene-specific hydroxylase gene PCR should be an efficient way of screening and isolating potentially-valuable cryptic polyene antibiotic biosynthetic genes from various microorganisms including rare actinomycetes.

Keywords

References

  1. J. Biol. Chem. v.274 The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin Aparicio, J. F.;A. J. Colina;E. Ceballos;J. F. Martin https://doi.org/10.1074/jbc.274.15.10133
  2. Chem. Biol. v.7 A complex multienzyme system encoded by five polyketide synthease genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis Aparicio, J. F.;R. Fouces;M. V. Mendes;N. Olivera;J. F. Martin https://doi.org/10.1016/S1074-5521(00)00038-7
  3. Appl. Microbiol. Biotechnol. v.61 Polyene antibiotic biosynthesis gene clusters Aparicio, J. F.;P. Caffrey;J. A. Gil;S. B. Zotchev
  4. BioChim. Biophys. Acta v.864 How do the polyene mactolide antibiotics affect the cellular membrane properties? Bolard, J. https://doi.org/10.1016/0304-4157(86)90002-X
  5. Chem. Biol. v.7 Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455:analysis of the gene cluster and deduction of the biosynthetic pathway Brautaset, T.;O. N. Sekurova;H. Sletta;T. E. Ellingsen;A. R. Strom;S. Valla;S. B. Zotchev https://doi.org/10.1016/S1074-5521(00)00120-4
  6. Chem. Biol. v.9 Hexaene derivatives of nystatin produced as a result of an induced rearrangement within the nysC polyketide synthease gene in Streptomyces noursei ATCC11455 Brautaset, T.;P. Bruheim;H. Sletta;L. Hagen;T. E. Ellingsen;A. R. Strom;S. Valla;S. B. Zotchev https://doi.org/10.1016/S1074-5521(02)00108-4
  7. Chem. Biol. v.8 Amphotericin biosynthesis in Streptomyces nodosus; deductions from analysis of polyketide synthase and late genes Caffrey, P.;S. Lynch;E. Flood;S. Finnan;M.Oliynyk https://doi.org/10.1016/S1074-5521(01)00046-1
  8. Microbiology v.148 The candicidin gene cluster from Streptomyces griseus IMRU 3570 Campelo, A. B.;J. A. Gil https://doi.org/10.1099/00221287-148-1-51
  9. Appl. Microbiol. Biotechnol. v.58 Antifungal antibiotics Gupte, M.;P. Kulkarni;B. N. Ganguli https://doi.org/10.1007/s002530100822
  10. Chem. Biol. v.8 Engineered biosynthesis of novel polynes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis Mendes, M. V.;E. Recio;R. Fouces;R. Luiten;J. F. Martin;J. F. Aparicio https://doi.org/10.1016/S1074-5521(01)00033-3
  11. Mol. Microbiol. v.20 Bacterial cytochromes P-450 Munro, A. W.;J. G. Lindsay https://doi.org/10.1111/j.1365-2958.1996.tb02632.x
  12. Mol. Microbiol. v.5 Occurrence and biological function of cytochrome P450 monooxygenases in actinomycetes O'Keefe, D. P.;P. A. Harder https://doi.org/10.1111/j.1365-2958.1991.tb02139.x
  13. J. Comput. Aided. Mol. Des. v.14 Conformational properties of amphotericin B amide derivatives - impact on selective toxicity Resat, H.;F. A. Sunger;M. Baginski;E. Borowski;V. Aviyente https://doi.org/10.1023/A:1008144208706
  14. A laboratory Mannual Practical Streptomyces Genetics Kieser, T.;M. J. Bibb;m. J. Buttner;K. F. Chater;D. A. Hopwood
  15. J. Microbiol. Biotechnol. v.10 New Polyene Macrolide Antibiotics from Streptomyces sp. M90025 Seo, Y. M.;K. W. Cho;H. S. Lee;T. M. Yoon;J. H. Shin
  16. Curr. Opin. Microbiol. v.4 Combinatorial biosynthesis of antimicrobials and other natural products Rodriguez, E.;R. McDaniel https://doi.org/10.1016/S1369-5274(00)00246-0
  17. Microbiology v.146 Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC11455 Zotchev, S.;K. Haugan;O. Sekurova;H. Sletta;T. E. Ellingsen;S. Valla https://doi.org/10.1099/00221287-146-3-611
  18. Nat. Biotechnol. v.21 A genomics-guided approach for discovering and expressing cryptic matabolic pathways Zazopoulos, E.;K. Huang;A. Staffa;W. Liu;B. O. Bachmann;K. Nonaka;J. Ahlert;J. S. Thorson;B. Shen;C. M. Farnet https://doi.org/10.1038/nbt784