Fungal Sterilization Using Microwave-Induced Argon Plasma at Atmospheric Pressure

  • Park, Jong-Chul (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Park, Bong-Joo (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Han, Dong-Wook (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Lee, Dong-Hee (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Lee, In-Seop (Atomic-Scale Surface Science Research Center, Yonsei University) ;
  • Hyun, Soon-O. (New Material R&D Center, Korea Institute of Industrial Technology) ;
  • Chun, Moon-Sung (Department of Nuclear Engineering, Seoul National University) ;
  • Chung, Kie-Hyung (Department of Nuclear Engineering, Seoul National University) ;
  • Maki Ahiara (Division of Microbiology, National Institute of Health Sciences) ;
  • Kosuke Takatori (Division of Microbiology, National Institute of Health Sciences)
  • Published : 2004.02.01

Abstract

The main aim of this study was to investigate the sterilization effects of microwave-induced argon plasma at atmospheric pressure on paper materials contaminated with fungi. Plasma-treated filter papers showed no evidence to an unaided eye of burning or paper discoloration due to the plasma treatment. All fungi were perfectly sterilized in less than 1 sec, regardless of strains. These results indicate that this sterilization method for paper materials is easy to use, requires significantly less time than other traditional methods and different plasma sterilization methods, and is also nontoxic.

Keywords

References

  1. Brewer, J. H. 1973. Aerospace research: Application to industrial sterilization, pp. 299-303. In G. B. Phillips and W. S. Miller. (eds.), Industrial Sterilization, 2$^nd$ ed. Duke University Press, Durham, NC, U.S.A
  2. Bronislaw, Z. 1997. Fungi isolated from library materials: A review of the literature. Int. Biodeter. Biodegr. 40: 43- 51 https://doi.org/10.1016/S0964-8305(97)00061-9
  3. Bruch, C. W. 1973. Factors determining choice of sterilization procedure, pp. 119-123. In G. B. Phillips, and W. S. Miller, (eds.), Industrial Sterilization, 2$^nd$ ed. Duke University Press, Durham, NC, U.S.A
  4. Campbell, B. A. 1993. Circular waveguide plasma microwave sterilizer apparatus. United States Patent No. 5,184,046
  5. Chau, T. T., C. K. Kwan, B. Gregory, and M. Francisco. 1996. Microwave plasmas for low temperature dry sterilization. Biomaterials 17: 1273-1277
  6. Cheo, W., G. C. Kwon, J. Kim, J. Kim, S. J. Jeon, and S. Hul. 2000. Simple microwave preionization source for ohmic plasmas. Rev. Sci. Instrum. 71: 2728-2732
  7. Fabbri, A. A., A. Ricelli, S. Brasini, and C. Fanelli. 1997. Effect of different antifungals on the control of paper biodeterioration caused by fungi. Int. Biodeter. Biodegr. 39: 61-65
  8. Goode, S. R. and K. W. Baughman. 1984. A review of instrumentation used to generate microwave-induced plasmas. Appl. Spectrosc. 38: 755-763
  9. Gould, G. W. 1983. Mechanism of resistance and dormancy, pp. 171-209. In A. Hurst and G. W. Gould, (eds.), The Bacterial Spore, vol. 2. Academic Press, New York, U.S.A
  10. Han, D. W., H. Suh, D. H. Lee, B. J. Park, K. Takatori, and J. C. Park. 2002. Detection of oleic acid biodegradation by fungi. J. Microbiol. Biotechnol. 12: 514-517
  11. Jeng, D. H., K. A. Kaczmarek, A. G. Woodworth, and G. Balasky. 1987. Mechanism of microwave sterilization in the dry state. Microbiology 53: 2133-2137
  12. Khomich, A. V., I. A. Soloshenko, V. V. Tsiolko, and I. L. Mikhno. 1997. Cold sterilization of medical devices and materials by plasma DC glow discharge. Proceedings of the 12$^th$ International Conference on Gas Discharges & Their Applications. Greifswald. 2: 740-744
  13. Kim, S. H. and K.-B. Oh. 2002. Evaluation of antimicrobial activity of farnesoic acid derivatives. J. Microbiol. Biotechnol. 12: 1006-1009
  14. Laroussi, M. 1996. Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE T. Plasma Sci. 24: 1188-1191
  15. Moisan, M. and Z. Zakrzewski. 1991. Plasma sources based on the propagation of electromagnetic surface waves. J. Phys. D. Appl. Phys. 24: 1025-1048
  16. Park, J.-C., D.-W. Han, B. J. Park, D. H. Lee, K. Takatori, and H. Suh. 2001. Effective screening medium for the biodegradation of oleic acid by Aspergillus niger. Biocontrol Sci. 6: 37-41
  17. Podder, N. K., E.-D. Mezonlin, and J. A. Johnson, III. 2001. A microwave generated plasma in a tunable resonant cavity for studies of turbulence in weakly ionized gases. IEEE T. Plasma Sci. 29: 965-969
  18. Raper, K. B. and D. I. Fennell. 1965. In: The Genus Aspergillus, pp. 293-344. The Williams and Wilkins Co., Baltimore, MA, U.S.A
  19. Song, M. H., S. Kuppusany, H.-Y. Jeong, and K.-S. Chae. 2003. Inhibition of asexual sporulation and growth of Aspergillus niger and Aspergillus oryzae by propylamine. J. Microbiol. Biotechnol. 13: 146-148
  20. Thomas, C. M., K.-W. Kimberly, and J. Reece Roth. 2000. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE T. Plasma Sci. 28: 41-50
  21. Tsao, P. H. 1970. Selective media for isolation of pathogenic fungi. Annu. Rev. Phytopathol. 8: 157-186 https://doi.org/10.1146/annurev.py.08.090170.001105
  22. Vela, G. R. and J. F. Wu. 1979. Mechanism of lethal action of 2450MHz radiation on microorganisms. Appl. Environ. Microbiol. 37: 550-553
  23. Vohrer, U., I. Trick, J. Bernhardt, C. Oehr, and H. Brunner. 2001. Plasma treatment - an increasing technology for paper restoration? Surf. Coat. Tech. 142: 1069-1073
  24. Welt, B. A., C. H. Tong, J. L. Rossen, and D. B. Lund. 1994. Effect of microwave radiation on inactivation of Clostridium sporogenes spores. Appl. Environ. Microbiol. 60: 482-488