Characterization of Functional Groups of Protonated Sargassum polycystum Biomass Capable of Binding Protons and Metal Ions

  • Yun, Yeoung-Sang (Division of Environmental and Chemical Engineering and Research Institute of Industrial Technology, Chonbuk National University)
  • Published : 2004.02.01

Abstract

Biosorption technology is recognized as an economically feasible alternative for the removal and/or recovery of metal ions from industrial wastewater sources. However, the structure of biosorbents is quite complex when compared with synthetic ion-exchange resins, which makes it difficult to quantify the ion-binding sites. Accordingly, this report describes a well-defined method to characterize the pK values and numbers of biomass functional groups from potentiometric titration data. When the proposed method was applied to Sargassum polycystum biomass as a model biosorbent, it was found that the biomass contained three types of functional groups. In addition, the carboxyl group (pK=$3.7{\pm}0.09$) was found to be the major binding sites ($2.57{\pm}0.06 mmol/g$) for positively-charged heavy-metal ions.

Keywords

References

  1. Bailey, S. E., T. J. Olin, R. M. Bricka, and D. D. Adrian. 1999. A review of potentially low-cost biosorbents for heavy metals. Water Res. 33: 2469-2479 https://doi.org/10.1016/S0043-1354(98)00475-8
  2. Buffle, J. 1988. Complexation Reactions in Aquatic Systems: An Analytical Approach, pp. 156-157, pp. 280-283, p. 323. Ellis Horwood, Chichester, U.K
  3. Cho, J. S., J.-S. Hur, B.-H. Kang, P.-J. Kim, B.-K. Sohn, H.-J. Lee, Y.-K. Jung, and J.-S. Heo. 2001. Biosorption of copper by immobilized biomass of Pseudomonas stutzeri. J. Microbiol. Biotechnol. 11: 964-972
  4. Crist, R. H., J. R. Martin, D. Carr, J. R. Watson, and J. Clarke. 1994. Interaction of metals and protons with algae: 4. Ion exchange vs adsorption models and a reassessment of scatchard plots; ion exchange rates and equilibria compared with calcium alginate. Environ. Sci. Technol. 28: 1859-1866
  5. Crist, R. H., K. Oberholser, N. Shank, and M. Nguyen. 1981. Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Technol. 15: 1212-1217
  6. Davies, C. W. 1962. Ion Association. Butterworth, Washington, DC, U.S.A
  7. Fourest, E. and B. Volesky. 1995. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ. Sci. Technol. 30: 277-282
  8. Fourest, E. and B. Volesky. 1997. Alginate properties and heavy metal biosorption by marine algae. Appl. Biochem. Biotechnol. 67: 215-226
  9. Haug, A. 1961. The affinity of some divalent metals to different types of alginate. Acta Chem. Scand. 15: 1794-1795
  10. Hunt, S. 1986. Diversity of biomass structure and its potential for ion-binding applications, pp. 15-46. In H. Eccles and S. Hunt (eds.), Immobilization of Ions by Biosorption. Ellis Horwood, Chichester, U.K
  11. Jeon, C., J. Y. Park, and Y. J. Yoo. 2001. Biosorption model for binary adsorption sites. J. Microbiol. Biotechnol. 11: 781-787
  12. Jeon, C., J. Y. Park, and Y. J. Yoo. 2002. Characteristics of metal removal using carboxylated alginic acid. Water Res. 36: 1814-1824
  13. Kim, D. W., D. K. Cha, H. J. Seo, and J. B. Bak. 2002. Influence of growth rate on biosorption of heavy metals by Nocardia amarae. J. Microbiol. Biotechnol. 12: 878-881
  14. Kim, S. K., C.-G. Lee, and H. S. Yun. 2003. Heavy metal adsorption characteristics of extracellular polysaccharide produced by Zoogloea ramigera grown on various carbon sources. J. Microbiol. Biotechnol. 13: 745-750
  15. Lee, H. S. and B. Volesky. 1997. Interaction of light metals and protons with seaweed biosorbent. Water Res. 31: 3082- 3088
  16. Mardquardt, D. W. 1963. An algorithm for least square estimation of parameters. J. Soc. Ind. Appl. Math. 11: 431- 441 https://doi.org/10.1137/0111030
  17. Schecher, W. D. 1991. MINEQL+: A Chemical Equilibrium Model for Personal Computers, Users Manual Version 2.22. Environmental Research Software, Inc., Hallowell, ME, U.S.A
  18. Schiewer, S. and B. Volesky. 2000. Biosorption processes for heavy metal removal, pp. 329-362. In D. R. Lovley (ed.), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC, U.S.A
  19. Sousa, C., A. Cebolla, and V. Lorenzo. 1996. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nature Biotechnol. 14: 1017-1020
  20. Volesky, B. 1990. Removal and recovery of heavy metals by biosorption, pp. 7-43. In B. Volesky (ed.) Biosorption of Heavy Metals. CRC Press, Boca Raton, FL, U.S.A
  21. Westall, J. C., J. D. Jones, G. D. Turner, and J. M. Zachara. 1995. Models for association of metal ions with heterogeneous environmental sorbents: 1. Complexation of Co(II) by leonardite humic acid as a function of pH and NaClO$_4$ concentration. Environ. Sci. Technol. 29: 951-959
  22. Yang, J. B. and B. Volesky. 1999. Modeling the uraniumproton ion exchange in biosorption. Environ. Sci. Technol. 33: 4079-4085
  23. Yun, Y.-S. and B. Volesky. 2003. Modeling of lithium interference in cadmium biosorption. Environ. Sci. Technol. 37: 3601-3608
  24. Yun, Y.-S., D. Park, J. M. Park, and B. Volesky. 2001. Biosorption of trivalent chromium on the brown seaweed biomass. Environ. Sci. Technol. 35: 4353-4358
  25. Yun, Y.-S., H. Niu, and B. Volesky. 2001. The effects of impurities on metal biosorption, pp. 573-580. Proc. of the 14th International Biohydrometallurgy Symposium, Ouro Preto, Brazil