Abstract
Studies on porous oxide electrode, dye and electrolyte for dye-sensitized solar cells have been intensively carried out until now. However, counter electrode have not been much studied so far. Accordingly, it is needed to investigate new counter electrode materials with superior catalyst property and to substitute for Pt electrode. In this case, carbon nano-tubes (CNTs) are one of alternatives for counter electrodes as following merits: low resistivity, excellent electron emission property, large surface area and low cost due to development of mass production technique. Such advantages gave us to select multiwalled CNTs (MWCNT) as counter electrode for dye-sensitized solar cell. Also, cyclic voltammetry and impedance spectroscopy were used to investigate electrochemical properties of both CNT electrode and Pt electrode. It was found that sheet resistance of CNT electrode was similar to that of Pt electrode, also, electrochemical properties of CNT electrode was superior to that of Pt electrode on the basis on the measurement of CV and impedance spectrum. It was found that CNT is likely to be a very promising electrode material for dye solar cells.