영상처리를 이용한 작물의 모종시기 결정

Determination of Transferring Period of Several Plants using Image Processing

  • 민병로 (성균관대학교 바이오메카트로닉스학과) ;
  • 김웅 (성균관대학교 바이오메카트로닉스학과) ;
  • 김동우 (성균관대학교 바이오메카트로닉스학과) ;
  • 이대원 (성균관대학교 바이오메카트로닉스학과)
  • 발행 : 2004.09.01

초록

본 연구는 영상 처리를 이용하여 채소의 모종 시기를 자동으로 파악할 수 있는 시스템을 개발하기 위한 것이다 즉 작물의 높이, 장변 및 단변을 영상처리를 이용해 자동으로 측정하고자 하는 시스템을 개발하고자 한 것이다. 각 작물 당 20개씩의 실험체를 두어반복 측정한 결과, 들깨의 경우 높이는 평균 오차 5.0mm로 평균 실측 길이 대비 1.7% 오차율, 장변은 평균 오차 4.7mm, 오차율 3.9%, 단변은 평균 오차 5.5 mm, 오차율 6.9%로 나타났다. 도라지의 경우 높이는 평균 오차 2.4 mm, 오차율 8.1%, 장변은 평균 오차 3.4 mm, 오차율 7.2%, 단변은 평균 오차 4.0 mm, 오차율 10.4%로 나타났다. 상추의 높이는 평균 오차 4.0 mm, 오차율 9.1%, 장변은 평균 오차 3.4 mm, 오차율 7.2%, 단변은 평균 오차 3.6mm, 오차율 9.4%로 나타났다. 따라서 현장 환경에 맞게 좀 더 개선된다면 사람의 시각을 이용한 작물의 생장상태 판별보다 더 정확하다고 판단된다.

This study carried out to develope the vision system which automatically finds out a optimum transferring period of plants (Perilla, Platycodon grandifloums and Lactuca sativa) by using image process-ing. This system mearsured a height, long diameter and short diameter of the three plants with 20 replications. Following results were obtained on each plant. Compared with real data to be measured by hand with the vernier calipers, height, long diameter and short diameter of Perilla showed 0.5 mm average error rate with 1.7%, 4.7 mm average error rate with 3.9% and 5.5 mm average error rate with 6.9% respectively. Those of Platycodon grandifloums showed 2.4 mm with 8.1%, 3.4 mm with 7.2% and 4.0 mm with 10.4% respectively. Those of Lactuca sativa showed 4.0 mm with 9.1 %,3.4 mm with 7.2% and 3.6 mm with 9.4% respectively. The system could be used to transfer accurately the plant seedling, if the system were improved enough to reduce error rate for the optimum transferring period of a plant in the greenhouse.

키워드

참고문헌

  1. Kim, G.Y. and K.H. Ryu. 1998. Crop growth measurements by image processing in greenhouse. Journal of the KSAM 23(3):285-290 (in Korean)
  2. Lee, C.W., B.R. Min, W. Kim, D.W. Kim, K.W. Seo, and D.W. Lee. 2003. Development of image processing algorithm for detection abnormal part in esophagus'sendoscopic image. Proceedings of the of the KSAM 9(1):455-459 (in Korean)
  3. Lee, J.H., S.H. Noh, and K.H. Ryu. 1996. Analysis of plants shape by image processing. Journal of the KSAM 21(3):315-324 (in Korean)
  4. Min, B.R., W. Kim, D.W. Kim, K.W. Seo, C.W. Lee, and D.W. Lee. 2003a. Analysis of the back propagation for cucumber image processing. Proceedings of the of the KSAM 8(1):400-401 (in Korean)
  5. Min, B.R., W. Kim, D.W. Kim, K.W. Seo, C.W. Lee, D.W. Lee, and C.S. Kim. 2003b. Analysis of the back propagation and associative memory for image system. Proceeding of Bio-Environment Control 12(1): 181-190 (in Korean)
  6. Morio, Yoshinari and Yoshio Ikeda. 1999. Quality evaluation of cut roses by stem's curvature(Part 1) Stem extracting method. Journal of the JSAM 61(6): 57-64 (in Japanese)
  7. Morio, Yoshinari and Yoshio Ikeda. 1999. Quality evaluation of cut roses by stem's curvature(Part 2) Reconstruction of 3-D stem shape. Journal of the JSAM 62(3):103-110 (in Japanese)
  8. Noh, S.H., K.H. Ryu, and S.M. Kim. 1991. Classification of apple coloration using image processing system. Journal of the KSAM 16(3):272-280 (in Korean)
  9. Seo, K.W., B.R. Min, W. Kim, D.W. Kim, C.W. Lee, and D.W. Lee. The dynamic stereo vision system for recognizing a position in the 3-D coordinates. Proceedings of the of the KSAM 8(1):478-483 (in Korean)
  10. Seo, S.Y. and G.E. Miles. 1989. Measurement of morphological properties of tree seedlings using machine vision and image processing. Journal of the KSAM 14(3):188-195 (in Korean)
  11. Son, J.R., C.H. Kang, K.S. Han, S.R. Jung, and K.Y. Kwon. 2001. Recognition of missing and bad seedlings via color image processing. Journal of the KSAM 26(3):253-262 (in Korean)