Synthesis, Structure, and Thermal Property of Poly(trimethylene terephthalate- co-trimethylene 2,6-naphthalate) Copolymers

  • Jeong, Young-Gyu (Hyperstructured Organic Materials Research Center and School of Materials Science and Engineering, Seoul National University) ;
  • Jo, Won-Ho (Hyperstructured Organic Materials Research Center and School of Materials Science and Engineering, Seoul National University) ;
  • Lee, Sang-Cheol (School of Advanced Materials and Systems Engineering, Kumoh National University of Technology)
  • Published : 2004.09.01

Abstract

Poly(trimethylene terephthalate-co-trimethylene 2,6-naphthalate)s (P(TT-co-TN)s) with various copolymer composition were synthesized, and their chain structure, thermal property and crystalline structure were investigated by using $^1$H-NMR spectroscopy, differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD), respectively. It was found from sequence analysis that all the P(TT-co-TN) copolymers synthesized have a statistical random distribution of TT and TN units. It was also observed from DSC thermograms that the glass transition temperature increases linearly with increasing the TN comonomer content, whereas the melting temperature of copolymer decreases with increasing the corresponding comonomer content in respective PTT- and PTN-based copolymer, showing pseudo-eutectic melting behavior. All the samples melt-crystallized isothermally except for P(TT-co-66 mol % TN) exhibit multiple melting endotherms and clear X-ray diffraction patterns. The multiple melting behavior originates from the dual lamellar population and/or the melting-recrystallization-remelting. The X-ray diffraction patterns are largely divided into two classes depending on the copolymer composition, i.e., PTT and PTN $\beta$-form diffraction patterns, without exhibiting cocrystallization.

Keywords

References

  1. S. Poulin-Dandurand, S. P$\'{e}$rez, J. F. Revol, and F. Brisse, Polymer, 20, 419 (1979) https://doi.org/10.1016/0032-3861(79)90064-8
  2. I. J. Desborough, I. H. Hall, and J. A. Neisser, Polymer, 20, 545 (1979) https://doi.org/10.1016/0032-3861(79)90163-0
  3. E. Jakeways, I. M. Ward, M. A. Wilding, I. H. Hall, I. J. Desborough, and M. G. Pass, J. Polym. Sci., Polym. Phys., 13,799 (1975) https://doi.org/10.1002/pol.1975.180130412
  4. I. M. Ward and M. A. Wilding, J. Polym. Sci., Polym. Phys., 14, 263 (1976) https://doi.org/10.1002/pol.1976.180140206
  5. E. E. Shafee, Polymer, 44, 3727 (2003) https://doi.org/10.1016/S0032-3861(03)00282-9
  6. M. Pyda and B. Wunderlich, J. Polym. Sci., Polym. Phys., 38, 622 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000215)38:4<622::AID-POLB14>3.0.CO;2-U
  7. J.-M. Huang and F.-C. Chang, J. Polym. Sci., Polym. Phys., 38, 934 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000401)38:7<934::AID-POLB4>3.0.CO;2-R
  8. P.-D. Hong, W.-T. Chung, and C.-F. Hsu, Polymer, 43, 3335 (2002) https://doi.org/10.1016/S0032-3861(02)00163-5
  9. M. Chen, C. C. Chen, K. Z. Kz, and R. M. Ho, J. Macromot. Sci., Phys., B41, 1063 (2002) https://doi.org/10.1081/MB-120013083
  10. P.-L. Wu and E. M. Woo, J. Polym. Sci., Polym. Phys., 41, 80 (2003) https://doi.org/10.1002/polb.10354
  11. R. S. Tsai and Y. D. Lee, J. Polym. Res., 5, 77 (1998) https://doi.org/10.1007/s10965-006-0043-x
  12. S. K. Hwang, C. Yeh, L. S. Chen, T. F. Way, L. M. Tsay, K. K. Liu, and L. T. Chen, Polymer Preprints, 40, 611 (1999)
  13. U. Stier, F. Gahr, and W. Oppermann, J. Appl. Polym. Sci., 80, 2039 (2001) https://doi.org/10.1002/app.1302
  14. U. Stier and W. Oppermann, J. Polym. Sci., Polym. Phys., 39, 620 (2001) https://doi.org/10.1002/1099-0518(20010301)39:5<620::AID-POLA1033>3.0.CO;2-5
  15. U. Stier, D. Schawaller, and W. Oppermann, Polymer, 42, 8753 (2001) https://doi.org/10.1016/S0032-3861(01)00448-7
  16. Y. G. Jeong, W. H. Jo, and S. C. Lee, Polymer, 44, 3259 (2003) https://doi.org/10.1016/S0032-3861(03)00270-2
  17. Y. G. Jeong, W. H. Jo, and S. C. Lee, Polymer, 45, 379 (2004) https://doi.org/10.1016/j.polymer.2003.11.023
  18. C. Hwo, T. Forschner, R. Lowtan, D. Gwyn, and B. Cristea, J. Plast. Film Sheet, 15, 219 (1999) https://doi.org/10.1106/9JG9-2UDP-AKH1-KNQ0
  19. X. S. Wang, X. G. Li, and D. Y. Yan, J. Appl. Polym. Sci, 78, 2025 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<2025::AID-APP240>3.0.CO;2-7
  20. J. M. Huang and F. C. Chang, J. Appl. Polym. Sci., 84, 850 (2002) https://doi.org/10.1002/app.10367
  21. T. W. Son, K. I. Kim, N. H. Kim, M. G. Jeong, and Y. H. Kim, Fiber Polym., 4, 20 (2003) https://doi.org/10.1007/BF02899325
  22. E. M. Woo and L. T. Lee, Polym. Bull, 50, 33 (2003) https://doi.org/10.1007/s00289-003-0145-0
  23. C. P. Roupakias, G. Z. Papageorgiou, and G. P. Karayannidis, J. Macromol. Sci. Pure & Appl. Chem., A40, 791 (2003) https://doi.org/10.1081/MA-120022271
  24. F. C. Chiu, K. H. Huang, and J. C. Yang, J. Polym. Sci, Polym. Phys., 41, 2264 (2003) https://doi.org/10.1002/polb.10590
  25. E. M. Woo and Y. H. Kuo, J. Polym. Sci., Polym. Phys., 41, 2394 (2003) https://doi.org/10.1002/polb.10591
  26. J. H. Kim, J. H. Park, H. K. Jang, J. Y. Yoon, and W. S Lyoo, J. Appl. Polym. Sci., 90, 2200 (2003) https://doi.org/10.1002/app.12878
  27. R. Yamadera and M. Murano, J. Polym. Sci., PolymChem., 5, 2259 (1967)
  28. J. L. Koenig, 'Chemical Microstructure of Polymer Chains', John Wiley and Sons, New York, 1980
  29. Y. G. Jeong, Ph.D. Thesis, Seoul National University, Seoul, Korea, 2003
  30. J. Chem. Phys., 28, 373 (1958) https://doi.org/10.1063/1.1744141
  31. E. A. DiMarzio and J. H. Gibbs, J. Polym. Sci., 40, 121 (1959) https://doi.org/10.1002/pol.1959.1204013609
  32. L. A. Wood, J. Polym. Sci., 28, 319 (1958) https://doi.org/10.1002/pol.1958.1202811707
  33. Y. S. Sun and E. M. Woo, Macromolecules, 32, 7836 (1999) https://doi.org/10.1021/ma990507y
  34. R. H. Lin and E. M. Woo, Polymer, 41, 121 (2000) https://doi.org/10.1016/S0032-3861(99)00127-5
  35. R. J. Samuels, J. Polym. Sci., Polym. Phys., 13, 1417 (1975) https://doi.org/10.1002/pol.1975.180130713
  36. W. M. Prest, Jr. and D. J. Luca, J. Appl. Phys., 46, 4136 (1975) https://doi.org/10.1063/1.321438
  37. K. N. Kruger and H. G. Zachmann, Macromolecules, 26, 5202 (1993) https://doi.org/10.1021/ma00071a035
  38. R. K. Verma and B. S. Hsiao, Trends Polym. Sci., 4, 312 (1996)
  39. R. K. Verma, H., Marand, and B. Hsiao, Macromolecules, 29, 7767 (1996) https://doi.org/10.1021/ma951727o
  40. Z. Denchez, A. Nogales, T. A. Ezquerra, J. Fernandes-Nascimento, and F. J. Balta-Calleja, J. Polym. Sci., Polym. Phys., 38, 1167 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000501)38:9<1167::AID-POLB8>3.0.CO;2-8
  41. G. Groeninckx and H. Reynaers, J. Polym. Sci., Polym. Phys., 18, 1325 (1980) https://doi.org/10.1002/pol.1980.180180613
  42. D. J. Blundell and B. N. Osbom, Polymer, 24, 953 (1983) https://doi.org/10.1016/0032-3861(83)90144-1
  43. Y. Lee and R. S. Porter, Macromolecules, 20, 1336 (1987) https://doi.org/10.1021/ma00172a028
  44. A. Jonas and R. Legas, Macromolecules, 26, 813 (1993) https://doi.org/10.1021/ma00056a036