DOI QR코드

DOI QR Code

Nickel Tolerance and the Complexing Role of Histidine in Raphanus sativus

무 유식물에서의 니켈내성과 히스티딘의 작용

  • Published : 2004.08.01

Abstract

The effect of nickel (Ni) on growth and some tolerance strategies with regard to heavy metal tolerance mechanism was investigated in radish (Raphanus sativus) seedlings. The protective effect of histidine on nickel stress conditions was also monitored. The seedling growth decreased with an increase in metal concentrations. The inhibitory effect was more pronounced in the root elongation than in the shoot elongation. Increasing Ni supply showed a progressive increase of Ni concentrations in the roots and shoots. Ni content was higher in the shoots than in the roots. In the presence of nickel, radish exhibited an antioxidative defense mechanism, as evidenced by the elevated malondialdehyde(MDA), showing that nickel is an efficient inducer of lipid peroxidation. Exposure of radish to elevated concentrations of nickel was accompanied by an increase in the proline content. Supplemental histidine in the presence of Ni ameliorated metal-induced growth inhibition and lipid peroxidation. Combinations of Ni and histidine resulted in a significant decline in proline content compared with Ni stress alone, indicating that histidine may provide protection against the adverse effect of Ni stress. From the results it is suggested that histidine is an efficient chelator by complexing metal ion within the plant and may playa role in nickel tolerance implicated in metal detoxification.

Keywords

References

  1. Science of the Total Environment v.172 Hazard to man and the enviroment posed by the use of urban waste compost Deportes I.;J. L. Benoit-Guyod;D. Zmirou https://doi.org/10.1016/0048-9697(95)04808-1
  2. Plant Physiol v.85 Nickel : a micronutrient essential for higher plants Brown P. H.;R. M. Welch;E. E. Cary;R. T. Checkai https://doi.org/10.1104/pp.85.3.801
  3. Biofactors v.1 Nickel as a micronutrient element for plants Dalton A. D.;S. A. Russel;H. J. Evans
  4. Plant Cell Environ. v.15 Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Pandolfini T.;R. Gabbrielli;C. Comparini https://doi.org/10.1111/j.1365-3040.1992.tb01014.x
  5. Photosynthesis Research v.36 Imfluence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants Moya J. L.;R. Ros;I. Picazo https://doi.org/10.1007/BF00016271
  6. Crit Rev. Plant Sci v.14 Micronutrient nutrition of plants Welch R. M. https://doi.org/10.1080/713608066
  7. Annu. Rev. Plant Physiol v.29 The physiology of metal toxicity in plants Foy C. D.;R. L. Chaney;M. C. White https://doi.org/10.1146/annurev.pp.29.060178.002455
  8. Biochnol v.13 Phytoremediation : a novel strategy for the removal of toxic metals from the environment using plant Salt D. E.;M. Blaylock;N. P. B. A. Kumar;V. Dushenkov;B. D. Ensley;I. Chet;I. Raskin https://doi.org/10.1038/nbt0595-468
  9. J. Geochemical Exploration v.59 The nickel hyper-accumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel Robinson B. H.;A. Chiarucci;R. R. Brooks;D. Petit;J. H. Kirkman;P. E. H. Gregg;V. De Dominicis https://doi.org/10.1016/S0375-6742(97)00010-1
  10. J. Geochemical Exploration v.60 The potential of the high-biomass nickel hyper accumulator Berkheya coddii for phytoremediation and phytomining Robinson B. H.;R. R. Brooks;A. W. Howes;J. H. Kirkman;P. E. H. Gregg https://doi.org/10.1016/S0375-6742(97)00036-8
  11. New Phytol. v.127 Heavy metal accumulation in British population of the metallophyte Thlaspi caerulescens J. and C. Presl(Brassicaceae) Baker A. J. M.;R. D. Reeves;A. S. M. Hajar https://doi.org/10.1111/j.1469-8137.1994.tb04259.x
  12. Nature v.379 Free histidine as a metal chelator in plants that accumulate nickel Kramer U;J. D. Cotter-Howells;J. M. Charnock;A. J. M. Baker;J. A. C. Smith https://doi.org/10.1038/379635a0
  13. Plant Physiol. v.131 The role of free histidine in xylem loding of nickel in Alyssum lesbiacum and Brassica juncea Kerkeb L.;U. Kramer https://doi.org/10.1104/pp102.010686
  14. Phytochem. v.47 Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata Sagner S.;R. Kneer;G. Wanner;J. P. Cosson;B. Deus-Neumann;M. H. Zenk https://doi.org/10.1016/S0031-9422(97)00593-1
  15. J. Plant Nutrition v.14 Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator Gabbrielli R.;C. Mattioni;O. Vergnano https://doi.org/10.1080/01904169109364266
  16. Plant Physiol. v.121 Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense(Halacsy) Persans M. W.;X. Yan;J. M. M. L. Patnoe;U. Kramer;D. E. Salt https://doi.org/10.1104/pp.121.4.1117
  17. Physiol. Plant. v.100 Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signalling Foyer C. H.;H. Lopez-Delgado;J. F. Dat;I. M. Scott https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  18. Ann. Rev. Plant Physiol., Plant Mol. Biol. v.43 Superoxide dismutase and stress tolerance Bowler C.;M. van Montague;D. Inze https://doi.org/10.1146/annurev.pp.43.060192.000503
  19. Communications in Soil Science Plant Analysis v.25 Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry(ICP-AES) Zhao F;S. P. McGrath;A. R. Crosland https://doi.org/10.1080/00103629409369047
  20. Methods Enzymol v.52 Microsomal lipid peroxidation Buege J. A.;S. D. Aust https://doi.org/10.1016/S0076-6879(78)52032-6
  21. Plant and Soil v.39 Rapid determination of free proline for water-stress studies Bates L. S.;R. P. Waldren;I. D. Teare https://doi.org/10.1007/BF00018060
  22. Physiol. Plantarum v.105 Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plant of the genus Alyssum Schickler, H.;;H. Caspi https://doi.org/10.1034/j.1399-3054.1999.105107.x
  23. plant Physiol. v.115 The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy Kramer U.;R. D. Smith;W. W. Wenzel;I. Raskin;D. E. Salt https://doi.org/10.1104/pp.115.4.1641
  24. Psychotria douarrei, New Phytol. v.150 Developmental and induced responses of nickel-based and organic defences of the nickel-hyperaccumulating shrub Davis M. A.;S. G. Pritchard;R. S. Boyd;S. A. Prior https://doi.org/10.1046/j.1469-8137.2001.00067.x
  25. New Phytol. v.158 Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii Robinson B. H.;E. Lombi;F. J. Zhao;S. P. McGrath https://doi.org/10.1046/j.1469-8137.2003.00743.x
  26. J. Exp. Bot. v.53 Plant responses to abiotic stresses : heavy metal-induced oxidative stress and protection by mycorrization Schutzenbubel A.;A. Polle https://doi.org/10.1093/jexbot/53.372.1351
  27. Plant Physiol. Biochem. v.36 Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots Baccouch S.;A. Chaoui;E. El Ferjani https://doi.org/10.1016/S0981-9428(98)80018-1
  28. Physiol. Plantarum v.101 Heavy metal-induced accumulation of free proline in metal-tolerant and a nontolerant ecotype of Silene vulgaris Schat H.;S. S. Sharma;R. Vooijs https://doi.org/10.1111/j.1399-3054.1997.tb01026.x
  29. New Phytol v.129 Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmatic compartmentation : a comparison of Cd- Mo- Ni- and Zn-stress Brune A.;W. Urbach;K. J. Dietz https://doi.org/10.1111/j.1469-8137.1995.tb04310.x
  30. Plant Physiol v.122 Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species Kramer U.;I. J. Pickering;R. C. Prince;I. Raskin;D. E. Salt https://doi.org/10.1104/pp.122.4.1343