DOI QR코드

DOI QR Code

The Oxidative Effects of Benzo[a]pyrene in Rat Hepatocyte Primary Culture

랫드 간세포 일차배양에서 Benzo[a]pyrene의 산화 효과

  • 임태진 (상지대학교 생명자원과학대학 생명공학과)
  • Published : 2004.04.01

Abstract

The objectives of present study were to investigate the effects of benzo[a]pyrene(BaP) on cytotoxicity, lipid peroxidation and antioxidant enzymes in rat hepatocyte primary culture. Primary cultures of rat hepatocytes were incubated for 24 hr, 48 hr or 72 hr in the presence of various concentrations (0, 10, 20, 30, 50 or 100 $\mu.$ M) of BaP. Cytotoxicity and cell viability were determined by measuring glutamic oxaloacetic transaminase(GOT) activity, lactate dehydrogenase(LDH) activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MIT) value. Lipid peroxidation was evaluated using thiobarbituric acid reactive substances(TBARS) assay. Effects on antioxidant system were determined by measuring glutathione peroxidase(GPx) activity, glutathione reductase(GR) activity and glutathione concentration. Activities of GOT and LDH, MTT value as well as TBARS concentration were not affected by up to 100 $\muM$ of BaP for 24 hr incubation. However, BaP at the concentration of 50 $\muM$ for 48 hr incubation or at the concentration of 30 $\muM$ for 72 hr incubation began to increase LDH activity and TBARS concentration but decrease MTT value, representing that BaP caused cytotoxicity and decreased cell viability in dose- and time-dependent manners. GPx activity began to be decreased by BaP at the concentration of 50 $\muM$ for 72 hr incubation. Whereas, GR activity began to be decreased by BaP at the concentration of 20 $\muM$ for 72 hr incubation. Glutathione concentration began to be decreased by BaP at the concentration of 20 $\muM$ for 72 hr incubation and was further reduced to 90% by 100 $\muM$ of BaP. These results demonstrate that BaP caused cytoctoxicity and decreased cell viability by increasing lipid peroxidation and decreasing glutathione concentration as well as activities of GPx and GR.

Keywords

References

  1. Crit. Rev. Toxicol. v.21 Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compunds: environmental and mechanistic considerations which support the developement of toxic equivalency factors (TEFs) Safe, S. https://doi.org/10.3109/10408449009089873
  2. Polycyclic hydrocarbons and cancer: enviroment, Chemistry and metabolism v.1 Mutagenicity and carcinogenicity of benzo[a]pyrene derivatives Levin, W.;A. W. Wood;P. G. Wislocki;R. L. Chang;J. Kapitulnik;H. D. Mah;H. Yagi;D. M. Jerine;A. H. Conney;Gelboin, H. V.(ed.);P. O. P. Ts'o(ed.)
  3. Physiol. Rev. v.60 Benzo[a]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes Gelboin, H. V. https://doi.org/10.1152/physrev.1980.60.4.1107
  4. Pharmacol. Rev. v.34 Metabolism of polycyclic aromatic hydrocarbons: etiologic role in carcinogenesis Pelkonen, O;D. W. Nebert
  5. Xenobiotica v.12 Purification and characterization of microsomal cytochrome P-450s Guengerich, F. P.;G. A. Dannan;S. T. Wright;M. V. Martin https://doi.org/10.3109/00498258209038945
  6. Environ. Health Perspect. v.88 Cullular responses to oxidative stress: the [Ah] gene battery as a paradigm Nebert, D. W.;D. D. Peterson;A. J. J. Fornace https://doi.org/10.2307/3431045
  7. Hepatotoxicology Free radical damage and lipid peroxidation Recknagel, R. O.;E. A. Glende;R. S. Britton;Meeks, R. G.(ed.);S. D. Harrison(ed.)R. J. Bull(ed.)
  8. Crit. Rev. Toxicol. v.23 Free radicals as mediators of tissue injury and disease Kehrer, J. P. https://doi.org/10.3109/10408449309104073
  9. Jpn. J. Physiol. v.46 Pathological aspects of active oxygenfree radicals Nakazawa, H.;C. Genka;M. Fujishima https://doi.org/10.2170/jjphysiol.46.15
  10. Free Radical Biol. Med. v.22 Oxidants as stimulators of signal transduction Suzuki, Y.J.;H. J. Forman;A. Sevanian https://doi.org/10.1016/S0891-5849(96)00275-4
  11. Mutat. Res. v.216 The light-dependent cytotoxicity of benzon[a]pyrene: effect on human erythrocytes,Escherichia coli cells, and Haemophilus influenzae transforming DNA Kagan, J.;R. W. Tuveson;H. H. Gong https://doi.org/10.1016/0165-1161(89)90048-4
  12. Chem. Res. Toxicol. v.9 Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon transdihydrodiols catalyzed by dihydrodiol dehydrogenase Penning, T. M.;S. T. Ohnishi;T. Ohnishi;R. G. Harvey https://doi.org/10.1021/tx950055s
  13. FEBS Lett. v.86 Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex McCord, J. M.;E. D. Jr. Day https://doi.org/10.1016/0014-5793(78)80116-1
  14. FASEB. J. v.6 Regulation of antioxidant enzymes Harris, E. D. https://doi.org/10.1096/fasebj.6.9.1612291
  15. Free Rad. Biol. Med. v.17 Importance of Se-glutathione peroxidase, catalase and Cu/Zn-SOD for cell survival against oxidate stress Michiels, C.; M. Raes;O. Toussaint;J. Remacle https://doi.org/10.1016/0891-5849(94)90079-5
  16. Ann. Rev. Biochem. v.52 Glutathione Meister, A.;M. E. Anderson https://doi.org/10.1146/annurev.bi.52.070183.003431
  17. Ann. Rev. Pharmacol. Toxicol. v.25 The regulation of hepatic glutathione Kaplowitz, N.;T. K. Aw;M. Ooktens https://doi.org/10.1146/annurev.pa.25.040185.003435
  18. Biochem. Cell Biol. v.71 Characterization of the in vitro hepatocyte model for toxicological evaluation: repeated growth stimulation and glutathione response Guillemette, J.;M. Marion;F. Denizeau;M. Fournier;P. Broisseau https://doi.org/10.1139/o93-002
  19. Cancer Lett. v.113 Oxidative stress to DNA, Protein, and antioxidant enzymes (superoxide dismutase and catalase) in rats treated with benzo(a)pyrene Kim, K. B.;B. M. Lee https://doi.org/10.1016/S0304-3835(97)04610-7
  20. Toxicol. Lett. v.41 Effect of cigarette smoke inhalation on antioxidant enzymes and lipid peroxidation in the rat Gupta, M. P.;K. L. Khanduja;R. R. Sharma https://doi.org/10.1016/0378-4274(88)90084-7
  21. Chemico-Biol. Inter. v.127 Lipid peroxidation, antioxidant enzymes, and benzo[a]pyrene-quinones in the blood of rats treated with benzo[a]pyrene Kim, H. S.;S. J. Kwack;B. M. Lee https://doi.org/10.1016/S0009-2797(00)00177-0
  22. Proc. Natl. Acad. Sci. USA v.81 Mutagenicity of quinones: pathways of metabolic activation and detoxification Chesis, P. L.;D. E. Levin;M. T. Smith;L. Ernster;B. L. Ames https://doi.org/10.1073/pnas.81.6.1696
  23. Proc. Natl. Acad. Sci. USA v.85 Production of oxidative DNA damage during the metabolic activation of benzo[a]pyrene in human mammary epithelial cells correlates with cell killing Leadon, S. A.;M. R. Stampfer;J. Bartley https://doi.org/10.1073/pnas.85.12.4365
  24. Methods Cell Biol. v.13 Preparation of isolated ratliver cells Seglen, P. O. https://doi.org/10.1016/S0091-679X(08)61797-5
  25. J. Immunol. Methods v.65 Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay Mosmann, T. https://doi.org/10.1016/0022-1759(83)90303-4
  26. Anal. Biochem. v.86 Determination of malonaldehyde precursor in tissues by thiobarbituric acid test Uchiyama, M.;M. Mihara; https://doi.org/10.1016/0003-2697(78)90342-1
  27. Ann. Clin. Lab. Sci. v.15 Increased lipid peroxidation in tissues of nickel chloridetreated rats Sunderman, F. W. Jr.;A. Marzouk;S. Hopfer;O. Zaharia;M. C. Reid
  28. Am. J. Clin. Pathol. v.28 A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases Reitman, S;S. Frankel https://doi.org/10.1093/ajcp/28.1.56
  29. Methods of Enzymatic Analysis.III. Enzymes 1:Oxidoreductases. Transferases, Verlag-Chemie Lactate dehydrogenase: UV-method with pyruvate and NADH Vassault, A.;Bergmeyer, H. U.(ed.);J. Bergmeyer(ed.);M. Grassl(ed.)
  30. Methods Enzymes. v.105 Assays of glutathione peroxidase Flohe, L.;W. A. Gunzler https://doi.org/10.1016/S0076-6879(84)05015-1
  31. Methods Enzymol. v.113 Glutathione reductase Carlberg, I.;B. Mannervik
  32. Toxicol. Lett. v.125 Cytotoxicity of natural compounds in hepatocyte cell culture models: the case of quaternary benzo[c]phenanthridine alkaloids Ulrichova, J.;Z. Dvorak;J. Vicar;J. Lata;J. Smrzova;A. Sedo;V. Silmanek https://doi.org/10.1016/S0378-4274(01)00430-1
  33. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford, M. M. https://doi.org/10.1016/0003-2697(76)90527-3
  34. Principles and Procedures of Statistics(2nd ed.) Steel, R. G. D.;J. H. Torre
  35. Cancer Res. v.36 Quantitative studies of the toxicity of benzo(a)pyrene to a mouse liver epithelial cell strain in culture Landolph, J. R.;J. C. Bartholomew;M. Calvin
  36. Environ. Mutagen, Carcinogens v.21 Effect of benzo[a]pyrene and mitomycine C on HeLa cell division cycle Yu, I. J.;C. H. Lim;H. J. Kim;K. H. Chung;K. S. Song;J. H. Han;Y. H. Chung
  37. Toxicology v.99 Inhibition of DNA synthesis in primary cultures of adult rat hepatocytes by benzo[a]pyrene and related aromatic hydrocarbons: role of Ah receptordependent events Zhao, W.;K. S. Ramos https://doi.org/10.1016/0300-483X(94)03028-Z
  38. Biochem. J. v.251 Significance of alterations in hepatic antioxidant enzymes. Primacy of glutathione peroxidase Simmons, T. W.;I. S. Jamall https://doi.org/10.1042/bj2510913
  39. J. Biol. Chem. v.194 Glutathione reductase of animal tissues Rall. T. W.;A. L. Lehninger
  40. Toxicol. In Vitro v.16 Toxicity of ethacrynic acid in isolated rat hepatocytes Yammamoto, K.;Y. Masubuchi;S, Narimatsu;S. Kobayashi;T. Horie https://doi.org/10.1016/S0887-2333(01)00107-2
  41. Biochem. Pharmacol. v.49 Inhibition of glutathione-related enzymes and cytotoxicity of ethacrynic acid and cyclosporine Hoffman, D. W.;P. Wiebkin;L. P. Rybak https://doi.org/10.1016/0006-2952(94)00474-Z
  42. Free Radic, Biol. Med. v.29 Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AP-1 nuclear binding Domenicotti, C.;D. Paola;A. Vitali;M. Nitti;C. d'Abramo;D. Cottalasso;G. Maloberti;F. Biasi;G. Poli;E. Chiarpottu;U. M. Marinari;M. A. Prozato https://doi.org/10.1016/S0891-5849(00)00429-9
  43. Toxicology v.187 Chloroform, Carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress Beddowes, E. J.;S. P. Faux;J. K. Chipman https://doi.org/10.1016/S0300-483X(03)00058-1
  44. Arch. Biochem. Biophys. v.293 Inhibition of protein carbonyl formation and lipid peroxidation by glutathione in rat liver microsomes Palamanda, J. R.;J. P. Kehrer https://doi.org/10.1016/0003-9861(92)90371-3
  45. Toxicol. Lett. v.126 The effect of glutathione and vitamine E on iron toxicity in isolated rat hepatocytes Milchak, L. M.;J. D. Bricker https://doi.org/10.1016/S0378-4274(01)00462-3