초록
본 논문은 여러 분야에서 활용될 수 있는 향상된 고속 Expectation-Maximization(FEM) 알고리즘을 제안한다. 첫째, EM의 초기값 설정의 방법으로 많이 사용되고 있는 클러스터링 기법인 K-means의 문제점을 해결하여 개선된 EM의 초기값 선정에 적용하였다. 이것은 기존 K-means 알고리즘에서 임의로 지정하던 랜덤한 초기값 선정을, 데이타 분포 특성을 이용한 균등 분할법을 사용하여 EM의 초기값 문제를 해결하였다. 둘째, EM 과정의 핵심을 이루는 후행 확률(Posterior)의 의미를 부각하여 최대 가능성 후행 확률(Maximum Likelihood Posterior: MLP)과정을 적용하였다. 최종적으로, 본 논문에서 제안한 고속 EM알고리즘(FEM)은 근본적으로 해결하기 못했던 기존의 EM 초기치 선정과 수렴에 대한 문제점을 개선함으로써, EM 알고리즘의 특성을 극대화하는 방향으로 상대적으로 마른 수렴과 향상된 결과를 가져온다. 제안된 알고리즘의 객관적 타당성을 위해 기존의 방법과 제안된 방법에 의한 시뮬레이션의 결과를 여러 데이타들을 가지고 비교 분석하여 제안한 알고리즘의 우수성을 입증하였다.
In this paper. a new Fast Expectation-Maximization algorithm(FEM) is proposed. Firstly the K-means algorithm is modified to reduce the number of iterations for finding the initial values that are used as the initial values in EM process. Conventionally the Initial values in K-means clustering are chosen randomly. which sometimes forces the process of clustering converge to some undesired center points. Uniform partitioning method is added to the conventional K-means to extract the proper initial points for each clusters. Secondly the effect of posterior probability is emphasized such that the application of Maximum Likelihood Posterior(MLP) yields fast convergence. The proposed FEM strengthens the characteristics of conventional EM by reinforcing the speed of convergence. The superiority of FEM is demonstrated in experimental results by presenting the improvement results of EM and accelerating the speed of convergence in parameter estimation procedures.