AR A4 AFHAN £&

A 94 #8 71¥ 505

AX A4 AELeNA EEH 9A Bal AW
(An Efficient Location Management Scheme in
Location-Aware Computing)

s=2u" zaa”

(MoonBae Song) (SangWon Kang)

(KwangJin Park)

gh o x| h
1T O ke

{Chong-Sun Hwang)

2 % oF AAY AL agFor FHJ= WS e 4L X A4 FHFBAAM T 8
b B2A sl st 2E & Yrk o2 A AAY X AHE 5o HASE mZzEZo|
s, lﬁiﬂ A=) A Hdee) gL HAE olF Hgel et 3A e, ASAAY AFE
ol EAE FAEAAU, At tid AUAA D AGgeE OgFn k. o] =L o)F
ol 234% Z‘Hl 9] 9x ARE FHsT AT AT Ae VW o]F mde F9e) a8a, o
2 nge g o]FdS At B 93] AN TERES ALI e vlasty, of Uy

of 914 A4 Mg = 2uE
A= © o5 AA Holeuo]x

FEHAA

24 7 I8 29En
, 1A #E, olF dY, 94A A TRES

, SLUP, SMM

Abstract One of the most important issue in location-aware computing is tracking moving objects
efficiently. To this end, an efficient protocol which updates location information in a location server

is highly needed. In fact, the performance of a location update strategy highly depends on the assumed
mobility pattern. In most existing works, however, the mobility issue has been disregarded and too
simplified as linear function of time. In this paper, we propose a new mobility model, called state-based
mobility model (SMM) to provide more generalized framework for both describing the mobility and
updating location information of complexly moving objects. We also introduce the state—~based location

update protocol (SLUP) based on this mobility model. Using experimental comparison, we illustrate
that the proposed technique is many times better in reducing location update cost and the

communication bandwidth consumption.
Key words :
protocol, SLUP, SMM

1. Introduction

Recently, the evolution of mobile computing,

location sensing, and wireless networking has

created a new class of computing: location-aware
computingl1l]. A location-aware system is one that
knows where each user is located and can use the

location-specific information anywhere and anytime.

tu B 4 aidista AFEAN|edTL: AT

mbsong @disys.korea.ac.kr
kjpark@disys.korea.ac.kr

+on) 3 9 nEdge 7 Fe st
swkang@disys.korea.ac kr

o FAY - weidite AR} wg
hwang@disys.korea.ac.kr

=S 0 20049 19 139

Arbge 0 o20048 79 74

moving objects database, location management, mobility patterns, location update

In location-aware computing environments, the
mobility of mobile client (MC) is emerging in many
forms and applications such as database, network
and so on. MCs can dynamically change their
locations over time. The objects which continuously
change their location and extent are called moving
objects[2-4]. Thus,

issues in location-aware computing

one of the most important
is how to
model the location and the movement of moving
infra-

objects efficiently. Therefore, a software

structure for providing location-aware computing

environments, called moving database
(MOD), is significantly needed.

In recent times, there is a lot of work on the

objects

representation and management of moving objects

506 A8 =EA ol o] A 31 # Al 5 Z(2004.10)

[2-7]. Wolfson et al present the well-known data
called Moving Object
(MOST) for representing moving objects[3]. In the

model Spatio-Temporal
MOST model, the location of moving objects is
simply given as linear function of time, which is
specified by two parameters: the position and
velocity vector for the object. Thus, without fre-
quent update message, the location server can
compute the location of a moving object at given
time ¢ by linear interpolation: WO=y,+ v(t—¢y) at
time £ ¢, The update message is only issued

when the parameter of linear function, eg. o,
changed. In general, we said this update approach
dead-reckoning. It can provide a great performance
benefit in linear mobility patterns. But the
performance is decreased by increasing the ran-
domness of mobility pattern. So this approach
suffers great performance degradation in non-linear
mobility patterns.

In this paper, we look at the mobility model for
MOD and an appropriate location update protocol.
The purpose of our scheme is to model the overall
movement patterns in probabilistic manner. Depen-
ding on the temporal locality of mobility patterns,
the proposed scheme can greatly reduce the number
of update messages.

The rest of this paper is structured as follows:
In Section 2, we introduce the characteristics of
mobility patterns of real-life objects. The proposed
mobility model, called state-based mobility model
(SMM), will be described in Section 3. In Section
4, we present a new location update protocol called
state-based location update protocol (SLUP) consi-
dering mobility patterns on a per-user basis.
Extensive performance evaluation and comparison
of proposed scheme with traditional update stra-
tegies are also included in Section 5. Finally, the

summary and future work are presented in Section 6.

2. Motivation

Consider a traveling salesman who travels seve-
ral cities for selling commodities. He starts from
his company, and moves through an expressway.
When he reaches its destination, he strolls around

the city selling commodities, then finds a new

destination. We anticipate that this model will be
able to capture a large part of real-life objects’
movements. And it would include the essential
elements of mobility patterns such as linear
movement, random movement, and stationary state.
Whereas, existing mobility models have not express
the realistic movements of real-life objects. Thus, it
is inevitable that the update cost of a moving
object and the average error of accuracy will be
increased. In our work, we will classify the whole
trajectory of a user into ‘pause’, ‘linear movement,

and ‘random movement’ in the rough(see Figure 1).

mobility patterns

move

7N

linear movement random movement

pause

Figure 1 The classification of mobility patterns of
reallife objects

As we already know, a great diversity of mo-
bility patterns of real-life objects is quite natural.
But, there are some specific repeated patterns in
the movements. For example, in the linear move-
ments, the trajectory of an object is almost a line
in d-dimensional space. Whereas, if we can't find
the implicit knowledge of a specific pattern, let us
identify the portion of trajectory as random walk or
Brownian movement. And, of course, we have to
consider the temporal pattern of movements as
Markovian process. Our approach to the problem of
mobility modeling is primarily motivated by the
following observations[4,5,6,3].

*« A mobile subscriber will mainly switch between
two states! stop and move. A traveling salesman
has a tendency to remain in the same state
rather than switching states[8].

« The majority of objects in the real world do not
move according to statistical parameters but,
rather, move intentionally[6,8].

«Moving objects belong to a class. This class
restricts the maximum speed of the object. Dif-
ferent groups of moving objects exhibit different
kinds of behavior[5,6].

A2 QY HHFHAM 52L& Ax B 7H 507

» Motion has a random part and a regular part,
and the regular part has a periodic pattern[4].
The above properties are distilled from dozens of

papers in both Personal Communication System
(PCS) and MOD. Despite of all these observations,
the most of existing works have been disregarded
and too simplified as linear function of time.
Mobility models and its applications are widely
studied in location management of PCS environ-
ments. Many existing location management propo—
sals use some version of a random mobility model,
typically one-dimensional [9]. Modeling the random-
walk as a mathematical formula is a simple process
without difficulty. However, such mobility patterns
no longer reflect reality.

On the contrary, most of previous works in
spatiotemporal database assumed that the move-
ment pattern of a user closely approximated a line.
For example, the MOST data model assumed that
the movement pattern of real-life objects is very
close to 1 dimension. That is, objects move in the
plane but their movement is restricted on using a
given set of routes on the finite terrain. This is
called the 1.5 dimensional problem.

As we mentioned above, both MOD and PCS aim
to study the movement patterns of real-life objects.
Yet there
approach, and environments. Therefore, more flexi—
ble and realistic model for the consideration of
real-life mobility pattern is highly demanded. In

is a difference in their assumption,

MOD, real datasets of spatio-temporal patterns of
real-life mobile users are very hard to obtain. Our
approach is based on the mobility-awareness of
location update protocol that split the whole
movement of moving objects into the group of
simple movement state (or simply called state).
And, applying the corresponding update policy with
a movement component dynamically minimizes the
overall cost of the system.

3. State-based Mobility Model (SMM)

A mobility model, in the context of location
management, is an understanding of daily move—
ments of a user[9], and the description of this
understanding. Motivated. by this aim, various

mobility models have been developed in mobile

computing environments[89]. The mobility modeling
in MOD is tricky by reason of the higher location
granularity than that of PCS. Moreover, a matter of
concern in MOD is not a logical/symbolic location,
like cell-id, but the very physical/geographical
location of moving object obtained by a location-
sensing device such as GPS. As we mentioned
before, it is essentially needed to consider a
complex movement containing both a random and a
linear movement patterns.

3.1 Basic Definitions

We model the state-based mobility model (SMM)
that understands a complex mobility pattern as a
set of simple movement components using a finite
Markov
discussed in Section 2.

state chain based on classification

Definition 1. A movement state s; is a 3-tuple
(V min» ¥ max » #), Where v, and v, are the mini-
mum and maximum speed of a moving object
respectively. ¢ is a function of movement which is
either probabilistic or non-probabilistic function. S
is a finite set of movement states (called state
space).

Definition 2. The state-based mobility model
(SMM) describes a user mobility patterns using a
finite state Markov Chain where

state ,, state ,,

denotes the movement state at step n, state,=S

And, the chain can be described completely by its
transition probability as
b 7=Pr{state ,,\= jstate ,= i} for all i,jE8. (1)

These probabilities can be grouped together into
a transition matrix as P=(p ;) ;s

An important question is why such a general
mobility model is not as popular as the restrictive
models so abundant in the literature[10]. The most
important reason is that the generalized model has
nothing to be assumed to start the analysis.

In this paper, we assume only that the whole
mobility patterns are ‘divided into three basic
movement states such as pause, linear, and random
Each state has the self-transition probability », In
the SMM model, we assume that a moving object
has tendency to remain in the same state rather
than switching states[8]. This is generally called
temporal locality. The self-transition probability

508 ARG = A dolguo]lx A 3L A A 5 3.(2004.10)

vector (STPV) is obtained by taking all self-
transition probabilities, which is equivalent to an
1x]8 matrix.

Definition 3. The self-transition probability vec-
tor (STPV) “r of a transition probability matrix is
defined as 7=(p;) s And the temporal locality
(or locality) t is defined as

= ,1;1517 &) s, (2)

3.2 A Practical Instance of the SMM Model

As we mentioned before, the complex mobility
patterns in the real world can be interpreted as a
set of basic movement states (Figure 1). In this
section, we present a practical instance of the
proposed SMM model based on the three states
described above, So={P,L,R}.

Figure 2 An Instance of SMM Model: Sy={P,L, R}

Figure 2 shows a state transition diagram for
this instance. Let us define two measurements that
estimate how much each state has an influence on
the whole movement pattern in this simplified
model.

Definition 4. Linearity ¢ is defined as

. Zies Py
4= 2ijesq+L Py @
Also, randomness 7y is defined as
_ ZisPr
7= 3 jes.rD i @

For practical purpose, the above parameters is
quite important to describe the various feature of
mobility patterns.

4. State-based Location Update Protocol
(SLUP)

4.1 Cost Model & Initial Experiment

distributed
database in which the whole space is adequately
There
location server (LS) that is a fixed host directly

Firstly, we assume the location

decomposed into regions or cells. is a
communicating with regional processors (RPs). As
a lightweight server, each RP only monitors a
small set of objects and transmits the information
of its region to LS to maintain the consistency
between LS and RP.

Suppose that there are a huge number of moving

objects in d-dimensional space ?. For any time ¢
the position of the #h object is given by o9,
which is a point in a d-dimensional space. Then,
the movement history of the object o; is described
as a trajectory in (d+1)-dimensional space, which
consists of <0;(0),0;(1),...,0;(now)>. For location-
dependent query processing, the LS should track
the trajectory of network-registered moving objects.
Thus an efficient protocol, which updates location
information in the location server, is highly needed.
The goal of a location update protocol is to provide
more accurate location information with fewer
update messages to LS. Clearly, this issue is a
tradeoff between accuracy and efficiency.

Location update protocols are classified into four
major classes in terms of when the update message
is transmitted: time-based, movement-based, distance-
based, and dead-reckoning[11]. Each update protocol
has its own characteristics and different perfor—
mance depending on its underlying mobility model.
In other words, these algorithms need different
amounts of update messages satisfying the same
location precision or uncertainty.) We introduce a
new criterion to compare the efficiency of update
protocols using a simple formula by measuring the
update cost and the imprecision cost for a certain
amount of time. This criterion is called UITR

(update-and-imprecision to time ratio) (see Eq. 6).

1) The term “uncertainty’ is used as the threshold of location
imprecision which is a difference between the actual location
and database location. The concept of difference or distance is
quite application-specific.

92 A4 HHFRHAAM ZE&HY 94 @9 7 509

Naturally, it is preferable to keep the value of

UITR small with providing the same location
accuracy.
uglz (wyUsptw.esd)
C UITR= wn dsize (6)
104 Distance-based
Dead-reckoning
0.8
06
o

024"

00 T T T T T T 1
0 100 200 300 400 500 600
time

Figure 3 An example variations of C yre

To compute the value of UITR efficiently, we
employ the update window (UWin) and the impre-
cision window (IWin) in the form of a circular
queue. Each update flag (U, in UWin is true if
update message is transmitted, or false if does not.
Each item e, of IWin is the Euclidean distance
between the actual location and the estimated
location by an update policy. Both the UWin and
the IWn contain wndsize cost items from the time
t; and the current time (#;;,mai). Therefore, the
value of UITR is defined as the average cost of
update and imprecision cost to the size of UWin
and IWin.

distance-based approach and dead-reckoning app-

Figure 3 shows the comparison of

roach in terms of Cym In this comparison, the
movement of whole objects is random or linear
movements by turns with a fixed time interval 100.

We can identify the behavioral difference of two
update policies in Figure 3. Exhibiting complemen—
tarity with respect to mobility patterns, different ——
mutually complement -- update policies can be
applied to the aforementioned states. Under the
pause mode, we adopt the time-based approach to
minimize the communication with base station.
Reducing the average number of update messages

can have a significant impact in power consumption
of MT. In this way, it is important to find the
reasonable threshold 7, which is quite greater than
in traditional approach. In the linear mode, as you
know, the dead-reckoning approach has a great
performance benefit especially in a constant speed.
According to [3], the authors report that the update
costs can be reduced by 83% compared to other
protocols. A comprehensive study of dead-reckoning
has been done in [3l. Finally, under the random
mode, the movement patterns of an object have a
special property of spatial locality. In this case, we
employ the distance-based update protocol.

4.2 Protocol Details

During the life of a SLUP connection, the SLUP
protocol running in each moving object makes
SLUP states. The

behavior of a moving object is modeled as a

transitions through various
state-transition diagram (Figure 4). Each moving
object begins in the INITIAL state. The initi-
alization process starts with the bootstrapping
phase, then, carry out a self-test, performs the RP
discovery by network layer functionality, and then
enters the WARMUP state. While in the WARMUP
state, each moving object will choose the beginning
update policy according to their current mobility
patterns. Exploiting temporal locality of mobility
patterns, the update policy phase is decomposed
into small fraction of wupdate states such as
UP_PAUSE, UP_LINEAR, and UP_RANDOM. Each
update state consists of an update policy that is
how the

reflected

location information of an object is
in the the state-
transition function determining the next states of

location databases,

the object, and information related to the state. The
DISCONNECTED state is where a disconnection
occurs between an object and the current RP. In
this state, the last update policy with timestamp
should be saved to local memory of an object.
Upon reconnection, the state transition from
DISCONNECTED to the saved update state is legal
only if the time interval between the timestamp of
saved update state and reconnection time is smaller
If not so, the

be the

than a given threshold T o

destination of the state-transition will

WARMUP state.

510 AR =EA

tlolepwlo] 2 A 31 A A 5 Z(2004.10)

update states

initialization,
local RP discovery

registration &
authentication

WARMUP

INITIAL

T

discon

linear state

UP_LINEAR

UP_PAUSE

pause state

ending point
END

UP_RANDOM

random state

temporary disconnection

DISCONNECTED

Figure 4 The state transition diagram for the SLUP protocol

As mentioned previously, each moving object
performs not only the current update policy but
also the others. Then the optimal update policy
with the minimum UITR can be decided without
any difficulty. The additional cost, a few memory
and a small number of operation, is acceptable
owing to its reflective effectiveness in the number
of wupdate messages and the development of
hardware technology.

Definition 5. The SLUP Protocol is based on the
SMM model, and is represented by a finite set of update
policy called update policy list UPL={g\, tt9,..., 1
and the optimal update policy index opt

Definition 6. An update policy p is a 6-tuple
(£, C, UWn, IWn, 8 consisting of the estimated
location 1 by f a location estimation function f,
the cost function C, the update window UWin, the
imprecision window IWn, and a predefined location
uncertainty 9

We provide a detailed algorithm in Figure 5. In
this algorithm, the movement states are divided
into two major classes: linear movements and
random movements. The linear components can be
abstracted as a linear function of time, which is
specified by two parameters: the position and
velocity vector for the object. Consequently, such
an approach could minimize the location update cost
peculiarly at a constant velocity. Whereas, we
regard all other movements, including the random
walk and ping-pong movements, as the random
This is difficult to

components. is because it

Algorithm State-based Location Update Protocol
Input: A set of update policies UPL = {up, iy, i}
t0

repeat do
for each state u; € UPL do

le(t)
if d(l boy) > 6;
then UWin;ft mod wndsize;}«true
[t

T ‘now

// pseudo-update
else UWin,[t mod wndsize;l<—false

IWiny[t vod undsize;}—d({, L)

10. C—computeUITR Cost(UWin,, IWin;)

opt—argming < ; < nC;

© ® N ;e e N

—_
—

12 if oy is pseudo-updated

13, then SendUpdateMsg(opt, Ly, f 0t) to LS
14. t—t+1

15. until satisfy termination condition

Figure 5 Algorithm for SLUP Protocol

discover certain knowledge or relevant information
for further classification. This classification can be
interpreted as a process of extracting the low-cost
movement component from whole trajectory in term
of their movement patterns. Even though simple,
the approach that has never been tried in moving
very efficient in complex

objects database is

movements.

5. Performance Evaluation

5.1 Simulation Model and Workload Generation
The workload for the scenario of moving objects
can be either real, which extracted from the

real-life applications, or synthetic by mathematical

A2 VA ARHAA BEAHA 94X BE VN9 511

The artificially
synthesized datasets are normally used to evaluate

model (e.g., probability theory).
the impacts of specific parameters or in some case
when the real datasets are not available. Since the
real datasets in spatio-temporal database are very
hard to achieve, the method of synthesizing data is
widely used in various area [5-7]. In our experi-
ment, we use two kinds of synthetic datasets: our
proposed SMM model and City Simuator by IBM.

Using SMM Model. First of all, we suppose a
centralized database for the evaluation of the
proposed protocol with traditional update protocols.
So, we only observe the number of sending the
update messages with omitting the update step in
RP layer. To simplify the simulation model, we
assume that the delay time for sending messages is
ignorable. We leave out the pause state because of
the irrelevant with the evaluation. Then, we
represent this assumption in the state-transition
matrix, it is followed:

L R

T(T)zlL%<1T

1-r ,where £=1and 0<7< 1.
-T T (7

[¢
),whereOSfSooandT— m

(8)
We classify the transition matrices for the
T(r) and L(#¢). The

type T{7) has various characteristics with changing

i

Lz
L(@) = R ZL
¥

st

probability into two types:

the locality r from O to 1 within the linearity ¢
fixed with 1. The type L(#¢) has the linearity ¢
and the same value for the L and R column. By
definition, the locality of these matrices is
Vv 2/(¢ +1)% The maximum value of locality is 0.5,
where ¢ =1 with omitting the pause state. For the

simplicity, we represent the transition matrix of the

type T(r) with locality r and the transition matrix
of the type L(¢) with linearity ¢ as 7(z) and
L(¢), respectively.

In the workload generation, we employ the
of the

maximum speed of moving objects called v ., for

parameters linearity, the locality and

our state transition matrix. The first mobility
pattern is the pure random-walk. If the moving
objects exist in the dimension R? in this situation,
it means that the probability of movement to all
These

workloads may be generated by uniform, Zipf and-

directions in dimension d is the same.
Gaussian distribution like in[6]. If the linearity and
locality are 0.0 and 1.0 respectively in the matrix,
L(0), we can generate these workloads. In our
simulation, we use the movement vector by the
real number extracted from uniform distribution
within in the range of [—¢ ., T ¥mxl} In each
dimension.

On the other hand, we may consider a linear
mobility pattern for all moving objects. In this
situation, the trajectory of movements is almost
straight line. We assume that the constant speed in
this situation and the movement vector is generated
by the same way with random state. These work-
loads are generated by the matrix L with the
linearity oo, L(co). But the mobility patterns are
more realistic if the two characteristics of
movements, random-walk and linear mobility, are
mixed appropriately because the mobility patterns
for the real world may be both of all. Therefore,
these mobility patterns are required for an
approximate pattern to real world. We can create
the workloads by changing the linearity and
locality. Table 1 summarizes setting for the para-

meters in this experiment.

Table 1 Simulation Parameters for the SMM model

Parameter Description Values Used
#objects the number of objects 1,000
Vrmax maximum speed of moving objects 1
) location uncertainty 1.0, 20
#gen the simulation time 1000
r the temporal locality 0.0 ~ 1.0 (spacing 0.1)
¢ the linearity of movement 0, 0.1, 0.25, 0.5, 0.75, 1, 5, 10, 20, o©

512 FRAEE=EA ¢ doletdlo]2 A 31 W Al 5 5(200410)

Using City Simulator [12]. City Simulator is a
scalable, three-dimensional model city that enables
creation of dynamic spatial data simulating the
motion of up to 1 million people moving along
streets, buildings, and between building floors in
three dimensions. Several parameters allow
controlling the simulator. The startThreshold
represents the fraction of people that should be on
the ground level when the simulation should
“start”. And the fillThreshold represents the
minimum fraction of people that should ever be left
on the ground level. Finally, the emptyThreshold
represents the maximum fraction of people that
should ever be left on the ground level after a
commute out of the buildings has been triggered.
The parameters for City Simulator are presented in
Table 2.

The simulated moving objects perform random
walks on a building floor or they may move up or
move down from one floor to the next floor de-
pending on user—defined probabilities (upProb and
downProb) if they are near to specific points
(stairs){12}. An object on a road moves with a

Table 2 Simulation Parameters

linear combination of random walk and the drift
velocity of the road; the influence of the drift
velocity increases as a moving object gets closer to
the center of a road.

5.2 Effect of Linearity ¢

In this section, we discuss the effect of linearity
¢. The experiment is performed on the transition
matrix L(0)~L(c). And the maximum speed v g
of all objects is 1. Thus, the pure random and the
pure linear movements are represented as the
transition matrices of L(0) and L(e0) respectively.

Figure 6 shows the average number of update
messages for an object with varying linearity #
and two different & (1.0 and 20). In the
distance-based approach, increasing the linearity
gave rise to increasing the number of update
messages. This is because the displacement of
linear state is comparatively larger than random
state in the same amount of time. On the other
hand, the dead-reckoning approach performs very
well in the case of increasing linearity. Above all,
the performance has increased considerably when
the parameter linearity bigger than 1.0. The

for City Simulator Datasets

City Simulator dataset 0 1 2 3

4 5 6 7 8 9 10

fillThreshold 0.00 0.01 0.03 0.05

007 | 009 | 018 | 027 | 036 | 045 0.54

startThreshold 0.00 003 | 006 | 0.09

012 | 015 | 024 | 033 | 042 | 051 0.60

emptyThreshold 0.25 0.30 0.35 0.40

045 | 050 | 060 | 070 | 080 | 0.90 0.99

NumPeople 1,000 The number of people simulated.

Maximum number of relaxation steps before start of simulation. The

MaxRelax 2,000 simulator iterates until MaxRelax cycles or until the startThreshold is
reached.
FinalSteps 1,000 The number of simulation cycles actually stored in the datafile.

0.5

—e— Distance-based
-0+ Dead-reckoning
—¥— SLUP

Qe O
Py

Average update cost

|t anini o

0.1

00 v T T T T T T T T

0.5

—e— Distance-based
O+ Dead-reckoning
044 ~¥~ SLUP

e
w
L

Average update cost
o
N

0414 T

v———v——-v——"‘”"_r

0 01 025 05 075 1 25 5 10 20 50 inf
linearity

00 T T T T T T T T T T T
‘0 01 025 05 075 f 25 5 10 20 50 inf

linearity

Figure 6 Effect of linearity #:@ 6=1.0 and 6=2.0

AR D4 HF"AN BEHQ 942 e 79 513

outperformed traditional
approaches in the every case of varying linearity

proposed approach has
except L(). The matrix L(e) implies that all

objects moves along a straight line without
changing any direction vector.

5.3 Effect of Locality r

In this section, similar to Section 5.2, we discuss
the impact of varying locality. For example, if
locality is 0.0, the object will change to other state
unconditionally. On the other hand, if locality is 1.0,
the object will maintain its current state forever.
This

performance of

influence on the
The
experiment is performed on the transition matrix
T~ T7(1). And the maximum speed v, of all

locality has a great

location update protocol.

objects is 1. The matrix 7{r) can be defined as a

state-transition matrix with fixed linearity 1.0 and

varying locality z In respect of the matrix, the
quantity of random movements is identical with
that of linear movements, for the linearity is fixed
to 1.0. However, a transition matrix with larger
locality is likely to have more linear movements
than the opposite one. The dead-reckoning app-
roach, therefore, will be advantageous for a larger
locality under the same linearity.

Figure 7 shows the average number of update
messages for an object with varying locality r and
8 parameters. In the distance-based approach,
increasing the locality gave rise to increasing the
number of update messages. Since the linearity is
fixed to 1.0, such performance degradation in the
previous section can be avoided. Like the previous
results,

moreover, the performance of proposed

approach is likely to have the same curve as that

05 05
—&— Distance-based —&— Distance-based
O+ Dead-reckoning Q- Dead-reckoning
0.4 4 —9— SLUP 0.4 4 —— SLUP
" Ougy -
73 O, @
3 OBy]
2 03+ £ 034
3 o —9o oo o S
s g
@ o
& 021 g
o o
z -y -y -y v——-y Lamil ST z
0.1 4
NSRS S5 St S S
0.0 L v T T T T 0.0 4— T T T T T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0
focality locality
Figure 7 Effect of locality 7 6=1.0 and 6=2.0
10 10
084 [0 TSRO, YRR, TOISONIY, SN, SO, DTN q STRSRN ¢ SISINY ¢ INSRE] o MEERER 0] 084
g B e S A A S A 8 os —@— Distance-based
o] -0+ Dead-eckoning
g_ § —v— SLP
3
E 044
§’0.4 . g’ Q-rrerssQrerireiQererersQorerieeiQpevressa Qe e O Q-0
Z -0 Deadreckoning k4
—¥- SUUP
021 021 H_O_O_O_MO/'@/:
g
v Y-y =y g =P
00+ T T T T T 00— T T T v T
0 2 4 6 8 10 0 2 4 [8 10
CitySirmulator Datasets GitySimulator Datasets

Figure 8 Datasets from City Simulator :

6=1.0 and 6=2.0

514 AR A3 =7A]

of dead-reckoning approach. The proposed approach
has outperformed than the dead-reckoning approach
in the every case of varying linearity.

5.4 Using the Datasets from City Simulator

In order to reexamine the superiority of proposed
scheme, we consider an external spatiotemporal
dataset generator called City Simulator developed
by IBMI12]. As described in Tabe 2, we haved
generated 11 datasets by changing three threshold
probabilities: fillThreshold, startThreshold, and em-
ptyThreshold. At this experiment, we simplify the
simulation by considering only (x,y) position among
the (x,y,z) location generated from City Simulator.

Figure 8 shows the average number of update
messages for an object with two different &
parameters (1.0 and 2.0). In this experiment, our
proposed approach has outperformed traditional
approaches under all conditions. Particularly, the
location update cost is slightly increased from the
5th dataset in which filiThreshold=0.09,
Threshold=0.15, and emptyThreshold=0.50. This 1is

because the number of randomly moving object on

start-

ground level increases as the value of startTh-
summary, the
§=1.0
and 6=2.0 made by the proposed scheme are 25%

reshold probability increases. In

maximum performance improvements for

and 66% respectively.

6. Conclusions and Future Work

In this paper, we argue that a generalized mo-
bility model is quite effective to model the location
and movement of moving objects. In order to
provide efficient location update strategy, we have
proposed a new mobility model called SMM to
describe movement patterns of real-life objects in
probabilistic manners. This approach outperforms in
the mixed situation with linear movements and
random movements.

Future researches include the following. Firstly,
we want to investigate more useful property of
proposed SMM model based on Markov chain the-
ory. Secondly, we develop a highly scalable index-
ing structure for moving objects environment.
Finally, in the future, we plan to implement a por—
table software interface for the workload generation

glojebmlol 2 A 31 B A 5 Z(004.10)

based on our SMM model.

References

[1] Computer Science and Telecommunications Board
(CSTB), National Research Council. IT Roadmap
to a Geospatial Future, The National Academies
Press, 2003.

[2] Ralf Hartmut Guting, Michael H. Bohlen, Martin
Erwig, Christian S. Jensen, Nikos A. Lorentzos,
Markus Schneider, and Michalis Vazirgiannis. "A
Foundation for Representing and Querying Moving
Objects,” ACM Transactions on Database Sys-
tems, 25(1), 2000.

[3] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y.
Yesha, “Updating and querying databases that
track mobile units,” Distributed and Parallel
Databases, 7(3):257--387, 1999.

[4] Ouri Wolfson, "Moving Objects Information
Management: The Database Challenge,” Proc. of
NGITS, 2002.

[5] T. Brinkhoff, "Generating network-based moving
objects,” Proc. of SSDBM, 2000.

[6] D. Pfoser and Y. Theodoridis, "Generating sema-
ntics-based trajectories of moving objects,” Proc.
of Workshop on Emerging Technologies for Geo-
Based Applications, 2000.

[7] J-M. Saglio and J. Moreira, "Oporto: A realistic
scenario generator for moving objects,” Geolnfor-
matica, 5(1):71--93, 2001.

[8] Y.-C. Tseng, L.-W. Chen, M.-H. Yang, and].-].
Wu, "A stop-or-move mobility model for PCS
networks and its location-tracking strategies,”
Computer Communications, 26:1288-1301, 2003.

[9] T. Kunz, A. A. Siddiqi, and J. Scourias, "The
peril of evaluating location management proposals
through simulations,” Wireless Networks, 7(6):
635-643, 2001.

[10] A. Bhattacharya and S. K. Das, "LeZi-update: An
information-theoretic approach to track mobile
users in PCS networks,” Proc. of MOBICOM,
1999.

[11] A. Bar-Noy, 1 Kessler, and M. Sidi, "Mobile
users: To update or not to update?,” Wireless
Networks, 1(2):175--186, 1995.

[12] IBM alphaWorks: City Simulator,
alphaworks.ibm.com/tech/citysimulator

[13] E. Pitoura and G. Samaras, "Locating Objects in
Mobile Computing,” IEEE Transaction on Know-
ledge and Data Engineering, 13(4), 2001.

[14] D. Barbara, "Mobile computing and databases - A
survey,” IEEE Transaction on Knowledge and
Data Engineering, 11(1):108--117, 1999.

http://www.

A A4 AFLIA AU AR B 7 515

R

199610 FAtEtm o) 3hAk 1998 %4
e olsh A 20039 mEUIEE
ojgt WAl S, 2001d~dA meivist
AFHANE dvh d7d B
ok Rl HARH, olFAA wlole
wlo)2, AlF 3} vlolg} mpolyd

KR

| 1998 meiviga A4 SRAL 20039

Tetheha AFE L HAL 20039~ B

 mEWEa AREG AR BTl
= Eupd wlojer#el, LBS, ol% AA),

Holgt wleld, Hujo|AB HFE

20009 @A Ew ol Ak 2002
adstn o8t Ma}l 2004 d|st
& o)gt WM} fg. 20043 ~&A 31
e AFeAErie dFa dF
FARoke Euly AXE, A B,
© QA 7Nk AElA

|
19783 Univ. of Georgia, Statistics
and Computer Science %A} 1978\d
South Carolina Lander FHuistw =
WS 19819 FZRFAT L AAA A
\ . A% 19959 =g Rasts] s 1982
‘ﬁ W~ dA weldizgte AFENY ug
1996 ~ €A moista HFeAEriedsd 43 #
A Fote duEE, EAAILH, dloletujols o] FHFH

=
[s)

