References
- Albengres , E., Tillement, J. P., Louet, H. L., and Morin, D., Trimetazidine: Experimental and clinical update review. Cardiovascular Drug Reviews, 16, 359-390 (1998) https://doi.org/10.1111/j.1527-3466.1998.tb00364.x
- Allen, D. G., Lee, J. A., and Westerbland , H., Intracellular calcium and tension during fatigue in isolated single muscle fibers from Xenopus Laevis. J. Physiol (Lond), 1415, 433-458 (1989)
- Allen , D. G., Westerblad , H., Lee, J. A., and Lannergren , J., Role of excitation-construction coupling in muscle fatigue. Sports Med., 13, 116-126 (1992) https://doi.org/10.2165/00007256-199213020-00007
- Baraka, A., Nerve and muscle stimulation of the rat isolated phrenic nerve-diaphragm preparation. Anesth. Analg., 53, 594-596 (1974)
- Eiken, O. and Tesch, P. A., Effects of hyperoxia and hypoxia on dynamic and sustained static performance of the human quadriceps muscle. Acta Physiol. Scand., 122, 629-633 (1984) https://doi.org/10.1111/j.1748-1716.1984.tb07553.x
- Emre, M., Karayaylall,I., and San, M., Effects of trimetazidine and selenium on high-frequency fatigue in isolated rat diaphragm muscle. Adv Ther., 20(5), 261-269 (2003) https://doi.org/10.1007/BF02849855
- Esau, S. A., Role of adenosine in the depolarization of hypoxic hamster diaphragm membrane in vitro. A J. Respir. Crit. Care Med., 149, 910-914 (1994) https://doi.org/10.1164/ajrccm.149.4.8143055
- Fitts, R. H., Cellular mechanisms of muscle fatigue. Physiol. Rev, 74,49-94 (1994) https://doi.org/10.2466/pr0.1994.74.1.49
-
Fryer, M. W, Owen, V. J., Lamb, G. D., and Stephenson, D. G., Effects of creatine phosphate and Pion
${Ca}^+^2$ movements and tension development in rat skinned skeletal muscle fibers. J. Physiol., (Lond) , 482, 123-140 (1995) https://doi.org/10.1113/jphysiol.1995.sp020504 - Garnier, D. and Roulet, M. J., Vasoactivity of Trimetazidine on Guinea-pig isolated ductus arteriosus. Br. J. Pharmacol., 84, 517-524 (1985) https://doi.org/10.1111/j.1476-5381.1985.tb12936.x
- Guarnieri, C., Finelly, C., and Zini, M. et al., Effects of trimetazidine on the calcium transport and oxidative phosphorylation of isolated rat heart mitochondria. Basic Res. Cardiol., 92, 90-95 (1997)
- Guyton, A. C. and Hall, J. E. Textbook of Medical Physiology. 'Metabolism of carbohydrates and formation of Adenosine Triphosphate' 10th Edition, Philadelphia , W.B. Saunders Company, pp.772-780 (2000)
- Harpey, C., Clauser, P, Labrid, C., Freyria, J. L., and Poirier, J. P., Trimetazidine, A cellular anti-ischemic agent. Cardiovasc. Drug Rev., 6, 292-312 (1988) https://doi.org/10.1111/j.1527-3466.1988.tb00381.x
- Hauet, T., Mothes, D., Goujon, J., Germonville, T.,Caritez , J. C., Carretier, M., Eugene, M., and Tillement, J., Trimetazidine reverses deleterious effects of ischemia-reperfusion in the isolated perfused pig kidney model. Nephron, 80, 296-304 (1998) https://doi.org/10.1159/000045190
- Hirano, H., Takahashi, E., Dio, K., and Watanabe, Y, Role of intracellular calcium in fatigue in single skeletal muscle fibers isolated from the rat. Pathophysiology, 6, 211-216 (2000) https://doi.org/10.1016/S0928-4680(99)00029-2
- Hogan, M. C., Richardson, R. S., and Kurdak, S. S., Initial fall i skeletal muscle force development during ischemia is related to oxygen availability. J. Appl. Physiol., 77(5), 2380-2384 (1994) https://doi.org/10.1152/jappl.1994.77.5.2380
- Kaijser, L., Limiting factors for aerobic muscle performance. Acta Physiol Scand., (Suppl), 346, 1-8 (1970)
- Kelsen, S. G. and Nochomovits, M. L., Fatigue ofthe mammalian diaphragm in vitro. J. Appl. Physiol., 53, 440-447 (1982) https://doi.org/10.1152/jappl.1982.53.2.440
-
Miller, R. G., Boska, R. S., Moussavi, P. J., and Carson, M. W. W.,
$^3^1{P}$ nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. J. Clin. Invest., 811, 1190-1196 (1988) - Murthy, G., Hargens, A. R., Lehman, S., and Rempel, D. M., Ischemia causes muscle fatigue. J. Orthop. Res., 19, 436-440 (2001) https://doi.org/10.1016/S0736-0266(00)90019-6
- Opie, L. H. and Boucher, F. R., Trimetazidine and myocardial ischemic contracture in isolated rat heart, Am. J. Cardiol., 76, 38B-40B (1995) https://doi.org/10.1016/0002-9149(95)90062-4
-
Renaud, J. F., Internal pH, Na and
${Ca}^+^+$ regulation by trimetazidine during cardiac cell acidosis. Cardiovasc. Drugs Ther, 1, 677-686 (1988) https://doi.org/10.1007/BF02125756 -
Rossi, A., Lavanchy, N., and Martin, J., Anti-ischemic effects of trimetazidine:
$^3^1{P}$ -NMR spectroscopy study in the isolated rat heart. Cardiovasc. Drugs Ther., 4, (SuppI4), 812-813 (1990) https://doi.org/10.1007/BF00051281 - Sjogaard, G., Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review. Can. J. Physiol. Pharmacol., 69, 238-245 (1991) https://doi.org/10.1139/y91-037
-
Stansby, W. N., Brechue, W. F., Drobinak, O., and Barclay, J. K., Effects of ischemic and hypoxic hypoxia on
${VO}_2$ and lactic acid output during tetanic contractions. J. Appl. Physiol., 68, 574-549 (1990) https://doi.org/10.1063/1.346809 -
Stary, C. M., Kohin, S., Samaja, M., Howlett, R. A., and Hogan, M. C., Trimetazidine reduces basal cytosolic
${Ca}^2^+$ concentration during hypoxia in single Xenopus skeletal myocytes Exp. Physiol., 88, 415-421 (2003) https://doi.org/10.1113/eph8802498 -
Van Lunteren , E., Moyer, M., and Torres, A., Effect of
${K}^+$ channel blockade on fatigue in rat diaphragm muscle. J. Appl. Physiol., 99, 331-340 (1995) - Van Lunteren, E., Torres, A., and Moyer, M., Effects of hypoxia on diaphragm relaxation rate during fatigue. J. Appl. Physiol., 82, 1472-1478 (1997) https://doi.org/10.1152/jappl.1997.82.5.1472
- Westerblad, H. and Allen, D. G., Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers J. Gen. Physiol., 98, 615-635 (1991) https://doi.org/10.1085/jgp.98.3.615
-
Westerblad, H. Allen, D. G., The contribution of
$[Ca^{2+}]_i$ to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. J. Physiol., (Land), 468, 729-740 (1993). https://doi.org/10.1113/jphysiol.1993.sp019797 - Westerblad, H., Duty, S., and Allen, D. G., Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse muscle. J. Appl. Physiol., 75, 382-388 (1993) https://doi.org/10.1152/jappl.1993.75.1.382
- Westerblad, H., Lee, J. A., Lannergren, J., and Allen, D. G., Cellular mechanisms of fatigue in skeletal muscle. Am. J. Physiol., 261, C195-C209 (1991) https://doi.org/10.1152/ajpcell.1991.261.2.C195
-
Wilson, J. R., McCully, K. K., Mancini, D. M., and Boden, B. B., Chance relationship of muscular fatigue to pH and diprotonated Pi in humans, a
$^3^1{P}$ _NMR study. J. Appl Physiol., 64, 2333-2339 (1988) https://doi.org/10.1152/jappl.1988.64.6.2333