An Antioxidant Hispidin from the Mycelial Cultures of Phellinus linteus

  • 발행 : 2004.06.01

초록

In the course of screening for reactive oxygen species scavengers from natural products, an antioxidant was isolated from the mycelial culture broth of Phellinus linteus and identified as hispidin. The hispidin content was reached its maximum level at 12 days after onset of inoculation. About 2.5 mg/mL of hispidin was produced by P linteus in a yeast-malt medium (pH 5.8, $25^{\circ}C$). Hispidin inhibited 22.6 and 56.8% of the super oxide anion radical, 79.4 and 95.3% of the hydroxyl radical, and 28.1 and 85.5% of the DPPH radical at 0.1 and 1.0 mM, respectively. The positive control ${\alpha}-tocopherol$ scavenged 25.6 and 60.3%, 74.6 and 96.3%, and 32.7 and 77.5% of each radical, respectively, at the same concentrations. However, hispidin showed no significant activity on the hydrogen peroxide radical.

키워드

참고문헌

  1. Adam, W., Saha-Moeller, C. R., Veit, M., Markus, W., and Welke, B., A convenient synthesis of hispidin from piperonal. Synthesis, 11, 1133-1134 (1994)
  2. Awadh Ali, N. A., Mothana, R. A. A., Lesnau, A., Pilgrim, H., and Lindequist, U., Antiviral activity of Inonotus hispidus. Fitoterapia, 74, 483-485 (2003) https://doi.org/10.1016/S0367-326X(03)00119-9
  3. Blois, M. S., Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1201 (1958) https://doi.org/10.1038/1811199a0
  4. Borg, D. C., Oxygen free radicals and tissue injury. In M Tarr, and Samson, F. (Eds.). Oxygen free radicals in tissue damage. Birkhauser, Boston, pp. 12-55 (1993)
  5. Chung, S. K., Osawa, T., and Kawakishi, S., Hydroxyl radicalscavenging effect of spices and scavengers from brown mustard (Brassica nigra). Biosci. Biotech. Biochem., 61, 118-124 (1997) https://doi.org/10.1271/bbb.61.118
  6. Donald, B. M., Richard C. H., Peter, T. G., and Garry, G. D., Kinetic and stochiometricassessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy. J. Agric. Food Chem., 57, 1684-1699 (2003)
  7. Fiasson, J. L., Chemotaxonomic study of fungi. 44. Distribution of styrylpyrones in the basidiocarps of various Hymenochaetaceae. Biochem. System. Ecol., 10, 289-296 (1982) https://doi.org/10.1016/0305-1978(82)90002-3
  8. Geiger, J. P., Rio, B., Nandris, D., and Nicole, M., Laccases of Rigidoporus lignosus and Phellinus noxius. I. Purification and some physicochemical properties. App. Biochem. Biotechnol., 12, 121-133 (1986) https://doi.org/10.1007/BF02798419
  9. Gonindard, C., Bergonzi, C., Denier, C., Sergheraert, C., Klaebe, A., and Chavant, L., Synthetic hispidin, a PKC inhibitor, is more cytotoxic toward cancer cells than normal cells in vitro. Cell Bioi. Toxicol., 13, 141-153 (1997) https://doi.org/10.1023/A:1007321227010
  10. Iio, M., Moriyama, A., Matsumoto, Y, Takai, N., and Fukumoto, M., Inhibition of xanthine oxidase by flavonoids. Agric. Biol Chem., 49, 2173-2182 (1985) https://doi.org/10.1271/bbb1961.49.2173
  11. Klaar, M. and Wolfgang, S., Fungus pigments, XXVII. Isolation of hispidin and 3,14'-bihispidinyl from Phellinus pomaceus (Poriales). Chem. Ber, 110, 1058-1062(1997) https://doi.org/10.1002/cber.19771100327
  12. Martin, A. R., Villegas, I., La Casa, C., and De la Lastra, A. A., Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem. Pharmacol., 67, 1399-1410 (2004) https://doi.org/10.1016/j.bcp.2003.12.024
  13. Muiler, H. E., Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium. Zentralbl. Bakteriol. Mikrobio. Hyg., 259, 151-158 (1985)
  14. Packer, L., Methods in enzymology: oxygen radicals in biological systems. Vol. 234, Part C, Academic Press, San Diego, pp. 704, (1994)
  15. Packer, L. and Glazer, A. N., Methods in enzymology: oxygen radicals and antioxidants. Vol. 186, Part B, Academic Press, San Diego, pp. 855, (1990)
  16. Prasad, K. N., Hovland, A. R., Cole, W. C., Prasad, K. C., Nahreini, P, Edwards-Prasad, J., and Andreatta, C. P., Multiple antioxidant in the prevention and treatment of Alzheimer disease: analysis of biologic rationale. Clin. Neuropharmacol., 23, 2-13 (2000) https://doi.org/10.1097/00002826-200001000-00002
  17. Qin, L., Liu, Y, Cooper, C., Liu, B., Wilson, B., and Hong, J.-S., Microglia enhance ${\beta}$-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J. Neurochemistry, 83, 973-983 (2002) https://doi.org/10.1046/j.1471-4159.2002.01210.x
  18. Rohrdanz, E. and Kahl, R., Alterations of antioxidant enzyme expression in response to hydrogen peroxide. Free Radical Biology& Medicine, 24, 27-38 (1998) https://doi.org/10.1016/S0891-5849(97)00159-7
  19. Slaga, T. J., Sirak , A., and Boutwell, R. K., Carcinogenesis-A comprehensive survey: mechanism of tumor promotion and carcinogenesis. Vol. 2, Raven Press, New York, pp. 588 (1978)
  20. Wettasinghe, M. and Shahidi, F., Scavenging of reactiveoxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chemistry, 70, 17-26 (2000) https://doi.org/10.1016/S0308-8146(99)00269-1