A Study on the Hardware Architecture of Trinomial $GF(2^m)$ Multiplier

Trinomial $GF(2^m)$ 승산기의 하드웨어 구성에 관한 연구

  • 변기영 (인하대학교 UWB-IT 연구센터) ;
  • 윤광섭 (인하대학교 전자전기공학부)
  • Published : 2004.09.01

Abstract

This study focuses on the arithmetical methodology and hardware implementation of low-system-complexity multiplier over GF(2$^{m}$ ) using the trinomial of degree a The proposed parallel-in parallel-out operator is composed of MR, PP, and MS modules, each can be established using the regular array structure of AND and XOR gates. The proposed multiplier is composed of $m^2$ 2-input AND gates and $m^2$-1 2-input XOR gates, and the propagation delay is $T_{A}$+(1+[lo $g_2$$^{m}$ ]) $T_{x}$ . Comparison result of the related multipliers of GF(2$^{m}$ ) are shown by table, it reveals that our operator involve more regular and generalized then the others, and therefore well-suited for VLSI implementation. Moreover, our multiplier is more suitable for any other GF(2$^{m}$ ) operational applications.s.

본 논문에서는 m차 trinomial을 적용한 새로운 GF(2m)상의 승산기법과 그 구현회로를 제안하였다. 제안한 연산기법들을 각각 MR, PP 및 MS라 명칭한 연산모듈로 구현하였고, 이들을 조직화하여 새로운 GF(2/sup m/) 병렬 승산회로를 구성하였다. 제안된 GF(2/sup m/) 승산기의 회로복잡도는 ㎡ 2-입력 AND게이트와 ㎡-1 2-입력 XOR게이트이며, 연산에 소요되는 지연시간은 T/sub A/+(1+[log₂/sup m/])T/sub x/이다. 제안된 연산기의 시스템 복잡도와 구성상의 특징을 타 연산기들과 비교하였고, 그 결과를 표로 정리하여 보였다. 제안된 승산기는 정규화된 모듈구조와 확장성을 가지므로 VLSI 구현에 적합하며, 타 연산회로로의 응용이 용이하다.

Keywords

References

  1. S.Lin, Error Control Coding, Prentice-Hall, Inc. New Jersey, 1983
  2. 이만영, BCH부호와 Reed-Solomon부호, 민음사, 1990
  3. I.S.Hsu, T.K.Troun, L.J.Deutsch, and I.S.Reed, 'A Comparison of VLSI Architecture of Multipliers using Dual, Normal, or Standard Bases,' IEEE Trans. Comput., vol.C-37, pp.735-739, 1988 https://doi.org/10.1109/12.2212
  4. T.Zhang and K.K.Parhi, 'Systematic Design Approach of Mastrovito Multipliers over GF(2m),' IEEE Workshop on SiPS 2000, pp.507-516, 2000 https://doi.org/10.1109/SIPS.2000.886749
  5. H.Okano and H.Imai, 'A Construction method of high-speed decoders using ROM's for Bose-Chaudhuri-Hocquenghem and Reed-Solomon codes,' IEEE Trans. Comput., vol. C-36, p.1165-1171, 1987 https://doi.org/10.1109/TC.1987.1676857
  6. B.A.Laws and C.K.Rushford, 'A Cellular-Array Multiplier for GF(2m)' IEEE Trans. Comput., vol. C-20, no. 12, pp. 1573-1578, Dec. 1971 https://doi.org/10.1109/T-C.1971.223173
  7. C.S.Yeh, I.S.Reed, and T.K.Trung, 'Systolic Multipliers for Finite Field GF(2m),' IEEE Trans. Comput., vol. C-33, pp. 357-360, April 1984 https://doi.org/10.1109/TC.1984.1676441
  8. M.A. Hasan, M.Z. Wang, and V.K. Bhargava, 'Moduler Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields GF($2^m$),' IEEE Trans. Computers, vol. 41, no. 8, pp. 961-971, Aug. 1992 https://doi.org/10.1109/12.156539
  9. C.Y.Lee, E.H.Lu, and J.Y.Lee, 'Bit-Parallel Systolic Multipliers for GF(2m) Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Comput., vol. 50, no.5, pp.385- 393, May 2001 https://doi.org/10.1109/12.926154
  10. E.D.Mastrovito, 'VLSI Architectures for Multiplication over Finite Fields,' Ph.D thesis, Dept. of Electrical Eng., Linkoping Univ., Linkoping, Sewden, 1991
  11. A. Halbutogullari and C.K. Koc, 'Mastrovito Multiplier for General Irreducible Polynomials,' IEEE Trans. Comput., vol. 49, no. 5, pp. 503-518, May 2000 https://doi.org/10.1109/12.859542
  12. B.Sunar and C.K.Koc, 'Mastrovito Multiplier for All Trinomials,' IEEE Trans. Comput., vol. 48, no. 5, pp. 522-527, May 1999 https://doi.org/10.1109/12.769434
  13. H.Wu, 'Montgomery Multiplier and Squarer for a Class of Finite Fields,' IEEE Trans. Comput., vol.51, no.5, pp.521-529, May 2002 https://doi.org/10.1109/TC.2002.1004591
  14. C.Paar, 'A New Architectures for a Parallel Finite Field Multiplier with Low Complexity Basrd on Composite Fields,' IEEE Trans. Comput., vol. 45, pp. 856-861, 1996 https://doi.org/10.1109/12.508323
  15. C.K. Koc and T. Acar, 'Montgomery Multiplication in GF(2k)' Designs, Codes, and Cryptography, vol. 14, pp. 57-69, 1998 https://doi.org/10.1023/A:1008208521515