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Abstract

A theoretical formula that is based on the geometrical theory of diffraction (GTD) is proposed for computing sound 
diffraction by multiple wedges, barriers, and polygonal-like shapes. The formula can treat both convex and concave edges, 

where edges may or may not be inter-connected. Comparisons of theoretical predictions with other results done by the BEM 
or experiments for scaled model confirm the accuracy of the present formula. Numerical examples such as double wedges 
and doubly inclined barrier show that when there exist several diffraction paths for given source and receiver positions, the 
insertion loss is dominated by the diffraction associated with the shortest propagation path.
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I . Introduction

Sound wave propagation over obstacles such as noise 
barriers and buildings are of great importance in many 
practical applications. The simplest problem is single 
diffraction of sound by a screen or wedge, for which 
numerous works have been done and an excellent literature 
review can be found in the paper by Ouis[l]. Among 
various theories on diffraction, the geometrical theory of 
diffraction (GTD[2-4]) has been widely used due to its 
relative easiness in numeric시 implementation and its 
accuracy is sufficient from the view point of engineering 
applications. Salomons[5] compared GTD with other 
methods such as BEM, parabolic equation method, and 

experimental results, and remarked that GTD is a fast and 
accurate tool fbr many practical applications for noise 
barriers. Originally, the GTD have been developed in 
electromagnetic waves, where high frequency diffraction is 
important in radar design .
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When sound propagates over thick barrier or polygonal- 

like obstacle, there occur multiple diffractions. Pierce[3] 
derived formula for double diffractions over a thick barrier 
by extending his GTD given fbr single edge. Kawai[6] 
extended Pierced idea to multiple diffraction by a many- 

sided barrier or pillar that consist of convex edges. Jin et al. 
[7] applied Kawai's expression to compute insertion loss of 
a partially inclined barrier, where they included diffractions 
occurred both at convex and concave edges. Robertson[8] 

and Ouis[l] also considered convex and concave edges in a 
wedge-like barrier on the ground.

Kawai's expression[6] based on GTD can be generalized 
to more complex configurations having an arbitrary number 
of convex and concave edges, provided that all edges are 
inter-connected by the common side plane. Salomons[5] 
proposed a method to deal with multiple arbitrarily placed 
barriers. However, his solution suffers from a numerical 
difficulty as discussed in Ref. [9].

For double barriers where two knife-edge barriers are 
separated, Wadsworth and Chambers[9] used the Biot- 
T olstoy-Medwin' s (BTM) method[10] in computing 
insertion loss. Although the BTM can handle general 
configurations in multiple diffraction and does not require 
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the edges to be connected, it is a time domain formulation, 
and needs FFT to obtain the frequency contents.

In this paper, we propose a method based on GTD to 
compute sound diffractions by multiple wedges, barriers, 

and polygonal-like shapes, where edges may or may not be 
inter-connected. We use the GTD developed by 

Kouyoumjian and Pathak[2], since it can handle concave 
edge and is more accurate compared to other GTDs as 

discussed in RefM. [1] and [6]. We investigate the accuracy 
of the present method by comparing the predictions to other 
results done by BEM or measurements. For numerical 
examples, we consider double and triple barriers, double 

wedges, and(k)ubly inclined barriers. We also study the 
contributions from different diffraction paths when there 

exist several propagation paths.

II. Theoretical analysis

We consider a wedge in Fig. 1, where we use a 

cylindrical coordinate system (乙。，z). The radial distance 
and angle of the source S, and receiver point R with respect 
to edge point Q are 甚,£), and (/%,&%) respectively, 

whereas the edge angle is defined as V7t. The diffracted 
wave field at receiver point R is given by [2]

。=0(。)&"广綱 ⑴

where ^(Q) is the incident wave at point Q, DQ the 
diffraction coefficient, M the scale factor. In this paper, we 
assume the time dependence as eia)t. For spherical wave 

incidence (we consider here only the normal incidence to
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the edge. For oblique incidence, a minor change is needed.
See Ref. [2] for details), we have

while for cylindrical wave incidence, m = i / y応,and 

0(Q) is replaced by Hankel function, (-z / 4)H⑵(如q).
The diffraction coefficient Dq can be expressed as [2]

The coefficient B is introduced for multiple diffraction, 

where B = 1 for sin읺e diffraction.
The function F (x), related to the Fresnel integral, is 

given by

F (x)= 2zVx exp(zx) J exp (5)
上

and

Dq = Vq(A,B^r -0s) + VQ(A,B,es+0R), (3)

in which a = rsrr /(rs +rr)and

WE”烏土硕끄芝尸网(애. (4)

x"=2曲 cos [世三의,

+ |0 for 0 <V7T - 7TN+=\
1 6 > v兀一兀

-1 for

A厂二« 0 fbr

1 for

(6)

0 <71 -V71
71 - V71 <0 <71 + V71 >.
6 > N * V冗

(7)
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After substituting Eq. (2) into Eq. (1), we rewrite Eq. (1) as

1厂％ (8)

where L=Rs+Rr9 and

(9)

According to Kawai[6], the error associated with Eq. (9) 
is within 0.5 dB when Rr2 시 A , in which A is 
wavelength.

For double wedges that are separated as shown in Fig. 2, 

the diffracted wave at receiver point R can be expressed by 
assuming the wave at point 2 as a source

奶 =。馅)曷즈理厂檢， (10)

V KrL

where ©(0) is given in Eq. (8), and L = Rs + " + Rr、

Note that the distance from the source is taken as R +W, 
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Figure 5. Comparison of insertion loss of a 2D 
barrier by prediction (17) and BEM.
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not W. After substitution of Eqs. (8) and (9) into (10), and 
rearrangement, we have

-ikL
H2, (11)

where

M + (12)

H》=[^2(^2 一％2)+ V2 ^2+&S2)]，(捋)

in which A{ =[w + rr)rs/ L, A2 ={w + rs^rr/L,邕=p, 

b2 = 1, and

WL
P=----------------------■ (14)

(W + Rs)(W + Rr)

Note that changing the source and receiver points in Fig. 
2 leads to different expressions from Eqs. (11) 一(13). To
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Figure 8. Double knife-edge barrier with w = 1.89 m,七=5 

m,七=1.5 m, %. = 7 m, yr =2 m, and h = 3.17 m 

(taken from Fig. 8 in Ref. [이).
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Figure 6. Magnitude ratio of triple (path: S-1-2-3-R) to double 

diffraction (path： S서-3-R), 卩 他」in Fig. 4.
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ensure the continuity of the sound field and reciprocity, we 
choose the coefficients Bx, B2 as discussed in Ref. [6] as

for , B、= p , B，2 = \, (15) 

where L is the traveled distance. It is worth noting that Eq. 
(18) can be applied to the case that there exist convex and 
concave edges simultaneously. For instance, diffraction for 
the path S-1-2-3-R in Fig. 4 is given by

fbr (q- 编)> x] - ％ J，% = 1,日2 = P • (16) (19)

For the case of a wide barrier in Fig. 3, where two edges 
are connected, we need to multiply 1/2 to Eq. (11), since 

there exists a mirror image on the connecting surface

1 e~ikL 
q一厂 H、％. (17)

Eqs. (11) and (17) can be extended to more general 
configuration. If the number of edges is N and number of 

pairs of neighboring edges that are connected is 
M respectively, the total diffraction field is given by

N

Q=1

(18) 

in which, £ = %+ %+.+&&, whereas diffraction for the 
path S-1-3-R is given by Eq. (11) with L = Rs + d + Rr.

In case of two-dimensional wave, we need to replace 
e~ikL/L in Eqs. (8), (11), (17) and (18) by (T/4)反⑵饱) 
(more strictly, asymptotic form of Hankel function when 

kL»\).

Hl. Numerical examples

As the first numerical example, we consider a two- 
dimensional wide barrier in Fig. 3 where S=(-13,0.5), R=(5, 
0.5), d = 1.5, h=2, in which all units are in meter. Here,
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Figure 9. Insertion loss of double knife-edge barrier in Fig. 8. 
Measurement data is from Ref. [9],

Figure 10. Triple barriers (taken from Fig. 1 in Ref. [11]), All 
units are in meter.
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Figure 11. Comparisons of insertion loss for triple barriers in 

Fig. 10. (Measurement data are from Ref. [11])
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we take into account the reflection from the ground. For 
comparison, we performed numerical analysis by using the 
BEM and compared the numerical results to theoretical 

prediction by using Eq. (17) in Fig. 5. In BEM, we model 
the upper h시f plane (j/ > 0 ), for which we modify the 
Green function to take into account the reflection from 

rigid ground

G(r, r') = (-/ /4)[H(2)(A|r-r' |) + H ⑵(k\rm - r' |)], (20)

in which vector F refers to the point to be computed, Ym 
is the image point of I* with respect to the ground, and 时 
refers to the point on the integration domain. The modified 
Green function makes the normal derivative vanish on the 

ground

8G/8") = 0 . (21)

We employed three-noded quadratic element, where 
there is about 10 elements within one wavelength at 2.5 

kHz. The insertion loss is defined as

2 m

Figure 12. Doubly inclined barrier.
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when s = (15 m, 0.5 m), and r = (너 0 m, 1.5 m).

IL = 20 log |^01<t>barrier I , (22)

where。()is the sound field without barrier

0。= £ exp(-z^£y )11”， (23)
J

in which i(i = 1,2) denotes two paths with and without 
ground reflections. Fig. 5 shows that theoretical prediction 

of insertion loss agrees well with the BEM result.
The next example is double wedges in Fig. 4, where all 

configurations are the same as in Fig. 3 except that convex 

edge is added at the center to form two wedges with 
9 = 36.9°，气=% = L25 m. We compared magnitude ratio 

of triple diffraction (path: S-1-2-3-R) to double diffraction 

(path: S-1-3-R), 知* /。加시 in Fig. 6, which shows that the 
ratio is less than 0.04 except low frequency (f < 400 Hz). In 
Fig. 7, we compared theoretical prediction including only 

double diffraction to BEM result, which shows good 
agreement except peak around 1 kHz.

For double barriers on the rigid ground as shown in Fig. 8, 
Wadsworth and Chambers[9] performed 1/10 scale model 

experiment. They used electric sparks as the sound source, 
which generates a transient pulse of duration 100|is. They 
transformed time domain data into frequency-based 
insertion loss after FFT process. In this paper, we computed 
insertion loss by using Eq. (11) and compared the results in 

Fig. 9, which shows excellent agreement.
For triple barriers shown in Fig. 10, Higashi et 

measured insertion loss by using 1/40 scale model, while 
varying height of microphone, Ry . Depending on the 
height of receiver position, wave propagation may change 
from triple diffraction to direct path. Here, we computed 
insertion loss for double (30 < Ry < 34)and triple diffraction 
(R), < 30). We compared the predictions with measurements 
in Fig. 11(a) and 11(b) for 250 Hz and 500 Hz, where no 

ground reflections are included. Figs. 11 show that two 
results differ by 2-4dB, which may be due to reflections 

from the ground. Note that predictions show abrupt 
changes across Ry = 30 , whereas measurements vary 

smoothly.
For the final example, we consider a doubly inclined 

barrier in Fig. 12. The source and receiver positions are: 
S=(15 m, 0.5 m); R=(-10 m, 1.5 m). We compared two 
cases: only double diffraction, </>SABR and double and triple 
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diffractions, </>SABR + </>SABCR + </>SBAeR • Fig. 13. shows that 
insertion loss may be represented by only double 

diffraction with sufficient accuracy.

IV. Concluding remarks

We have presented a GTD-based formula that can 
compute sound diffraction by multiple wedges, barriers, or 

polygonal-like shapes. Both convex and concave edges can 
be allowed in the formula, while edges may or may not be 

inter-connected. Comparisons of theoretical predictions 
with other results done by the BEM or experiments fbr 

scaled model have confirmed the accuracy of the present 
formula. Numerical examples such as double wedges and 

doubly inclined barrier have revealed that when there exist 
several diffraction paths fbr given source and receiver 

positions, the insertion loss is dominated by the diffraction 
associated with the shortest path.
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