DOI QR코드

DOI QR Code

Synthesis of Multi-Walled Carbon Nanotubes and Nanofibers on a Catalytic Metal Substrate Using an Ethylene Inverse Diffusion Flame as a Heat Source

에틸렌 역확산화염을 열원으로 사용하여 촉매금속 기판 상에 합성한 탄소나노튜브와 탄소나노섬유

  • 이교우 (한국과학기술연구원 대기자원연구센터) ;
  • 정종수 (한국과학기술연구원(KIST) 대기자원연구센터) ;
  • 강경태 (생산기술연구원 생산시스템본부 청정설계기술팀) ;
  • 황정호 (연세대학교 기계공학과)
  • Published : 2004.09.01

Abstract

The synthesis of Ni-catalyzed multi-walled carbon nanotubes and nanofibers on a catalytic metal substrate, using an ethylene fueled inverse diffusion flame as a heat source, was investigated. When the gas temperature was varied from 1,400K to 900K, approximately, carbon nanotubes with diameters of 20∼60nm were formed on the substrate. In the regions where the gas temperature was higher than 1,400K or lower than 900K, iron nanorods or carbon nanofibers were synthesized, respectively. Based on the quantitative analyses of large amount of SEM and TEM images, the nanotubes formed closer to the flame had a tendency of having larger diameters. HR-TEM images and Raman spectra revealed that carbon nanotubes synthesized had multi-walled structures with some defective graphite layers at the wall. Based on the graphite mode of the Raman spectra, it was believed that the optimal synthesis could be obtained as the substrate was positioned at between 5.5mm and 5.0mm, from the flame axis.

Keywords

References

  1. Baker, R. T. K. and Harris, P. S., 1978, 'The Formation of Filamentous Carbon,' Chem. Phys. Carbon, Vol. 14, pp. 83-165
  2. Kroto, H. W., Heath, J. R, O'Brien, S. C., Curl, R. F. and Smalley, R. E., 1985, '$C_{60}$ Buckminsterfullerene,' Nature, Vol. 318, p. 165 https://doi.org/10.1038/318162a0
  3. O'Brien, S. C., Heath, J. R, Curl, R. F. and Smalley, R. E., 1987, 'Photophysics of Buckminsterfullerene and Other Carbon Cluster Ions,' J. Phys. Chem., Vol. 88(1), pp. 220-230 https://doi.org/10.1063/1.454640
  4. Iijirna, S., 1991, 'Helical Microtubu1es of Graphite Carbon,' Nature, Vol. 354, pp. 56-58 https://doi.org/10.1038/354056a0
  5. Ebbesen, T. W. and Ajayan, P. M., 1992, 'Large-Scale Synthesis of Carbon Nanotubes,' Nature, Vol. 358, pp. 220-222 https://doi.org/10.1038/358220a0
  6. Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R, Vaquez, J. and Beyers, R., 1993, 'Cobalt Cata1ysed Growth of Carbon Nanotubes with Single - Atomic - Layer Walls,' Nature, Vol. 363, pp. 605-607 https://doi.org/10.1038/363605a0
  7. Iijirna, S. and Ichishi, T., 1993, 'Single-Shell Carbon Nanotubes of 1nm Diameter,' Nature, Vol. 363, pp. 603 - 605 https://doi.org/10.1038/363603a0
  8. Thess, A., Lee, R, Niko1aev, P., Dai, H., Petit, H., Robert, J., Xu, C, Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, G., Fischer, J. E. and Smalley, R. E., 1996, 'Crystalline Ropes of Metallic Carbon Nanotubes,' Science, Vol. 273, pp. 483 - 487 https://doi.org/10.1126/science.273.5274.483
  9. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegel, M. P. and Provencio, P. N., 1998, 'Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,' Science, Vol. 282, pp. 1105-1107 https://doi.org/10.1126/science.282.5391.1105
  10. Yuan, L., Saito, K., Pan, C., Williams, F. A. and Gordon, A. S., 2001, 'Nanotubes from Methane Flames,' Chem. Phys. Lett., Vol. 340, pp. 237 - 241 https://doi.org/10.1016/S0009-2614(01)00435-3
  11. Yuan, L., Saito, K., Hu, W. and Chen, Z., 2001, 'Ethylene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotubes,' Chem. Phys. Lett., Vol. 346, pp. 23 - 28 https://doi.org/10.1016/S0009-2614(01)00959-9
  12. Vander Wal, R. L., Ticich, T. M. and Curtis, V. E., 2001, 'Substrate - Support Interactions in Metal-Catalyzed Carbon Nanofiber Growth,' Carbon, Vol. 39, pp. 2277 - 2289 https://doi.org/10.1016/S0008-6223(01)00047-1
  13. Vander Wal, R. L., 2002, 'Fe-Catalyzed Single-Walled Nanotube Synthesis within a Flame Environment,' Combust. Flame, Vol. 130, pp. 37 - 47 https://doi.org/10.1016/S0010-2180(02)00360-7
  14. Vander Wal, R. L., Ticich, T. M. and Curtis, V. E., 2000, 'Diffusion Flame Synthesis of Single-Walled Carbon Nanotubes,' Chem. Phys. Lett., Vol. 323, pp. 217 - 223 https://doi.org/10.1016/S0009-2614(00)00522-4
  15. Vander Wal, R. L. and Ticich, T. M., 2001, 'Comparative Flame and Furnace Synthesis of Single-Walled Carbon Nanotubes,' Chem. Phys. Lett., Vol. 336, pp. 24-32 https://doi.org/10.1016/S0009-2614(01)00114-2
  16. Vander Wal, R. L. and Hall, L. J., 2002, 'Ferrocene as a Precursor Reagent for Metal-Catalyzed Carbon Nanotubes: Competing Effects,' Combust. Flame, Vol. 130, pp. 27 - 36 https://doi.org/10.1016/S0010-2180(02)00358-9
  17. Merchen-Merchen, W., Saveliev, A., Kennedy, L. A. and Fridman, A., 2002, 'Formation of Carbon Nanotubes in Counter-Flow, Oxy-Methane Diffusion Flames without Catalysts,' Chem. Phys. Lett., Vol. 354, pp. 20-24 https://doi.org/10.1016/S0009-2614(02)00027-1
  18. Saveliev, A., Merchen-Merchen, W. and Kennedy, L. A., 2003, 'Metal Catalyzed Synthesis of Carbon Nanostructures in an Opposed Flow Methane Oxygen Flame,' Combust. Flame, Vol. 135, pp. 27-33 https://doi.org/10.1016/S0010-2180(03)00142-1
  19. Lee, G. W., Jurng, J. and Hwang, J., 2002, 'Synthesis of Carbon Nanotubes and Nanofibers on a Catalytic Metal Substrate by an Inverse Diffusion Flame,' J. of the Korean Soc. of Combust., Vol. 7, No.4, pp. 21 - 28
  20. Lee, G. W., Jurng, J. and Hwang, J., 2003, 'Flame Synthesis of Carbon Nanofibers Using SUS304 Substrate,' J. of the Korean Soc. of Combust., Vol. 8, No.2, pp. 50-55
  21. Lee, G. W., Jurng, J. and Hwang, J., 2003, 'Synthesis of Carbon Nanotubes and Nanofibers on a Substrate Coated with Metal Nitrate Using an $C_2H_4$ Inverse Diffusion Flames,' Trans. of the Korean Soc. of Mech. Engineers E, Vol. 27, No. 10, pp. 1480-1488
  22. Lee, G. W., Jurng, J. and Hwang, J., 2004, 'Effects of the Distribution of Nickel-Nitrate and the Substrate Temperature on the Synthesis of Multi-Walled Carbon Nanotubes,' Trans. of the Korean Soc. of Mech. Engineers E, Vol. 28, No.2, pp. 215-222
  23. Lee, G. W., Jurng, J. and Hwang, J., 2004, 'Synthesis of Carbon Nanotubes on a Catalytic Metal Substrate Using an Ethylene Inverse Diffusion Flame,' Carbon, Vol. 42, No.3, pp. 682-685 https://doi.org/10.1016/j.carbon.2003.12.081
  24. Turns, S. R., 1996, An Introduction to Combustion, McGraw-Hill
  25. Mcneally, C. S., Koylu, U.O., Pfefferle, L. D. and Rosner, D. E., 1997, 'Soot Volume Fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocouples,' Combust. Flame, Vol. 109, pp. 701 - 720 https://doi.org/10.1016/S0010-2180(97)00054-0
  26. Lee, G. W., Jurng, J. and Hwang, J., 2002, 'Soot Concentration and Temperature Measurements in Laminar Ethylene Jet Double-Concentric Diffusion Flames,' Trans. of the Korean Soc. of Mech. Engineers E, Vol. 26, No.3, pp. 402 - 409
  27. Harris, P. J. F., 1999, Carbon Nanotubes and Related Structures, Cambridge University Press
  28. Trans. of the Korean Soc. of Mech. Engineers B v.26 no.3 Soot Concentration and Temperature Measurements in Laminar Ethylene Jet Double-Concentric Diffusion Flames Lee, G. W.;Jurng, J.;Hwang, J. https://doi.org/10.3795/KSME-B.2002.26.3.402
  29. Carbon Nanotubes and Related Structures Haris, P. J. F.