Central Crack in a Piezoelectric Disc

  • Kwon, Jong-Ho (Department of Automotive Engineering, ShinHeung College)
  • 발행 : 2004.09.01

초록

This study is concerned with the general solution of the field intensity factors and energy release rate for a Griffith crack in a piezoelectric ceramic of finite radius under combined anti-plane mechanical and in-plane electrical loading. Both electrically continuous and impermeable crack surface conditions are considered. Employing Mellin transforms and Fourier series, the problem is reduced to dual integral forms. The solution to the resulting expressions is expressed in terms of Fredholm integral equation of the second kind. The solutions are provided to study the influence of the crack length, the crack surface boundary conditions on the intensity factors and the energy release rate.

키워드

참고문헌

  1. Deeg, W. F. J., 1980, Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids, Ph.D. Dissertation, Stanford University
  2. Gao, C. F. and Fan, W. X., 1999, 'A general solution for the crack problem in piezoelectric media with collinear cracks,' International Journal of Engineering Science, Vol. 37, pp. 347-363 https://doi.org/10.1016/S0020-7225(98)00067-6
  3. Kwon, J. H. and Meguid, S. A., 2002, 'Analysis of a Central crack normal to a Piezoelectric-Orthotropic Interface,' International Journal of Solids and Structures, Vol. 39, pp.841-860 https://doi.org/10.1016/S0020-7683(01)00252-9
  4. Kwon, S. M. and Lee, K. Y., 2000, 'Analysis of stress and electric fields in a rectangular piezoelectric body with a center crack under anti-plane shear loading,' International Journal of Solids and Structures, Vol. 37, pp. 4859-4869 https://doi.org/10.1016/S0020-7683(99)00186-9
  5. Kwon, S. M. and Lee, K. Y., 2001, 'Eccentric crack in a rectangular piezoelectric medium under electromechanical loading,' Acta Mechanica, Vol. 148, pp.239-248 https://doi.org/10.1007/BF01183681
  6. Liu, J. X., Liu, Y. L., Wang, B. and Du, S. Y., 1998, 'Mode III crack in the piezoelectric layer of two dissimilar materials,' Key Engineering Materials, Vol. 145-149, pp. 1167-1172
  7. Magnus, W., Oberhettinger, F. and Soni, R. P., 1966, Formulas and Theorems for the Special Functions of Mathematical Physics (3rd Ed.). Springer-Verlag New York Inc., p. 2
  8. McMeeking, R. M., 1989, 'Electrostrictive stresses near crack-like flaws,' Journal of Applied Mathematics and Physics (ZAMP), Vol. 40, pp.615-627 https://doi.org/10.1007/BF00945867
  9. Meguid, S. A. and Wang, X. D., 1998, 'Dynamic anti plane behaviour of interacting cracks in a piezoelectric medium,' International Journal of Fracture, Vol. 91, pp. 391-403 https://doi.org/10.1023/A:1007521018293
  10. Narita, F. and Shindo, Y., 1998, 'Layered piezoelectric medium with interface crack under anti-plane shear,' Theoretical and Applied Fracture Mechanics, Vol. 30, pp. 119-126 https://doi.org/10.1016/S0167-8442(98)00048-2
  11. Pak, Y. E., 1990, 'Crack extension force in a piezoelectric material,' ASME Journal of Applied Mechanics, Vol. 57, pp. 647-653
  12. Pak, Y. E. and Goloubeva, E., 1996, 'Electroelastic properties of a cracked piezoelectric material under longitudinal shear,' Mechanics of Materials, Vol. 24, pp. 287-303 https://doi.org/10.1016/S0167-6636(96)00038-5
  13. Park, S. B. and Sun, C. T., 1995, 'Effect of electric field on fracture of piezoelectric ceramics,' International Journal of Fracture, Vol. 70, pp.203-216 https://doi.org/10.1007/BF00012935
  14. Qin, Q. H. and Mai, Y. W., 1999, 'A closed crack tip model for interface carcks in thermopiezoelectric materials,' International Journal of Solids and Structures, Vol. 36, pp.2463-2479 https://doi.org/10.1016/S0020-7683(98)00115-2
  15. Shindo, Y., Narita, F. and Tanaka, K., 1996, 'Electroelastic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip,' Theoretical and Applied Fracture Mechanics, Vol. 25, pp. 65-71 https://doi.org/10.1016/0167-8442(96)00008-0
  16. Shindo, Y., Tanaka, K. and Narita, F., 1997, 'Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear,' Acta Mechanica, Vol. 120, pp.31-45 https://doi.org/10.1007/BF01174314
  17. Sneddon, I. N., 1951, Fourier Transforms (Ist Ed.). McGraw-Hill, p. 527
  18. Sosa, H. A., 1991, 'Plane problems in piezoelectric media with defects,' International Journal of Solids and Structures, Vol. 28, pp. 491-505 https://doi.org/10.1016/0020-7683(91)90061-J
  19. Wang, X. D. and Meguid, S. A., 2001, 'Modeling and analysis of dynamic interaction between piezoelectric actuators,' International Journal of Solids and Structures, Vol. 38, pp.2803-2820 https://doi.org/10.1016/S0020-7683(00)00183-9
  20. Zhang, T. Y., Qian, C. F. and Tong, P., 1998, 'Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material,' International Journal of Solids and Structures, Vol. 35, pp. 2121-2149 https://doi.org/10.1016/S0020-7683(97)00168-6
  21. Zhao, M. H., Shen, Y. P., Liu, Y. J. and Liu, G. N., 1997, 'Isolated cracks in three-dimensional piezoelectric solid. Part II : Stress intensity factors for circular crack,' Theoretical and Applied Fracture Mechanics, Vol. 26, pp. 141-149 https://doi.org/10.1016/S0167-8442(96)00042-0