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FOURIER INVERSION OF
DISTRIBUTIONS ON THE SPHERE

FrANCISCO JAVIER GONZALEZ VIELI

ABSTRACT. We show that the Fourier-Laplace series of a distri-
bution on the sphere is uniformly Cesaro-summable to zero on a
neighborhood of a point if and only if this point does not belong to
the support of the distribution. Similar results on the ball and on
the real projective space are also proved.

1. Introduction

In [4] Kahane and Salem used the support of distributions to charac-
terize the closed sets of uniqueness in the unit circle S'. For this they
proved that, given a distribution T on S! whose Fourier transform FT
vanishes at infinity and E a closed set in S!, the support of T is in FE if
and only if for all z € S\ F

N
li T(k 2mizk _ )
i 2 FTE =0

Later Walter proved that the Fourier series

0o
Z fT(k‘) eZm’mk

k=—o0

of a general distribution T on S! is Cesaro-summable to zero for all z out
of the support of T [10]. However, this is not sufficient to characterize
the support of T, since, as Walter himself remarks, the Fourier series
of the first derivative of the Dirac measure at a point s € S!, &, is
summable in Cesaro means of order 2 to zero everywhere on S!. In fact
a point z is out of the support of T' if and only if the Fourier series of T is
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uniformly Cesaro-summable to zero on a neighborhood of z. In Section
4 we establish this result for the general case of a distribution T on S™~!
(n > 2) and its Fourier-Laplace series. We obtain as corollaries similar
results on the ball (Section 6) and on the real projective space (Section
7). In Section 5 we study in more detail some particular distributions on
S"~1. The necessary facts about Cesaro-summation and Fourier-Laplace
series are recalled in sections 2 and 3, respectively.

2. Summability

Let > ..~ bm be a series of complex numbers. Define, for all m € Ny,
k>0,

B,ﬁ::i(y:k)bm_,, and (”Zk) = (k+1)(k+2) ... (k+v)/0.

v=0

The series ), - b is said to be (C, k)-summable to B € C if

—1
lim Bk (m + k) - B,

m—oo k

and we write in this case

+oco

> bm=B (C,k).

m=0
When the numbers b,, depend on a parameter ¢ taken in a set T, the
series Y <o bm(2) is said to be uniformly (C, k)-summable to B(t) € C
onTif

-1
. k m+k _
Jim s40(" ) =50

uniformly in ¢ € T. The numbers

m+kEY"' o= (m—-l+k\ (m+k\"
(") =5 ()
1=0

are called Cesdro means of order k of the series [3, p.97]. The series
Y m>0 bm(t) converges to B uniformly on T if and only if it is uniformly
(C,0)-summable to B on T; if it is uniformly (C,k)-summable to B on
T, it is uniformly (C, k’)-summable to B on T for all &' > k [3, p.101].
A basic result is the following {3, pp.136-139):
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LEMMA 1. Letl > ~1, k > 0 and 6 €]0,2n[. Then the series
Y m>1 m!e™® is (C, k)-summable if and only if k > I. Moreover, when
k>1 3 m!e™?® is uniformly (C,k)-summable on every compact
subinterval of |0, 2n].

3. Fourier-Laplace expansions

We write S”~! the unit sphere in R" (n > 2) and do,—1 the measure
on S™! induced by the Lebesgue measure on R", so that

Wt = /S dona(n) = 27™/2 /T (n/2).

We define a distance d on S™ ! by d({,n) := 1 — (¢|n), where (.].)
is the euclidean scalar product in R™. We have 0 < d({,n) < 2 for
all ¢,n € 8™ ! and d(¢,n) = 2 if and only if ¢ = —n. A spherical
harmonic of degree I on S™ ! (I € Ny) is the restriction to 8"~! of a
polynomial on R™ which is harmonic and homogeneous of degree I. We
write SH;(S™"~!) the vector space of spherical harmonics of degree [; its
dimension is
di = d :=dimc SH[(Sn—l)
(2l+n—-2)(n+1-3)! ("2 _3
= = "=).
n—2)1! gy O
Two spherical harmonics of different degrees are orthogonal with respect
to the scalar product (.|.)s of L%(S"™!,do,_1). The space

Ui>oSH(S™1)

is total in L2(S"~1): if (EY,..., E(lil) is an orthonormal basis of
SHy (8"
then, for every f € L2(S™"™1), the series
+oo d;
>N (fIED2 EL,
1=0 j=1

called Fourier-Laplace series of f, converges to f in square mean; it
converges uniformly to f on S"~! for f € C®°(S™!) (see Section 4).
We put
d;
L(f) = Y _(fIE})2 E};

=1
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it is the orthogonal projection of f on SH;(S"!). We have, for ¢ €
Sn—l’

(O = [ 2CmImdonat),

where
d;
Zi(¢m) =Y _ BHC)EL(n)
j=1

(with 7 € 8™1) is the zonal with pole ¢ of degree I. If f is a function
defined on S"7!, we write f1 the homogeneous function of degree 0
defined on R™\ {0} by (f1)(z) := f(z/||z||). Conversely, if g is a function
defined on R™ \ {0} we write g| its restriction to S*~!. We say that a
function f on S"~! is in C'(S™~1) (where I € Ny) if f1e CYR™ \ {0}).
When f € CY(S"!) we can define, for every multiindex o € N} with
la| =01 + -+ an < I, D§f € CHlel(8n=1) by

la
Dgf = (D*(fM))l= (m(ﬁ))l :

In this way we can obtain from the Laplacian A := ?:1 o? /Bxf on

R™ the Laplace-Beltrami operator on S™1, Ag. We write D(S™!) the
space of functions C*°(8"~!) with the topology given by the family of
seminorms

Pm(p) := sup sup |Dgep(n)]
[a]<m pesn—1

(m € Np). Its dual, D'(S"71), is the set of distributions on S*1. The
Fourier-Laplace series of a distribution T on S*~! is

+oo d; _ +o0
DD T(ENE; =3 Iy(T),
1=0 j=1 =0

with, for ¢ € 871,

I(T)(C) :=Tn — Zi(¢, M)}

it converges to T in the sense of distributions. The support of T €
D'(S"~!) will be written suppT. Because S"~! is compact, every dis-
tribution on it is of finite order.
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4. Fourier inversion on the sphere

THEOREM 1. Let T € D'(S™~!) be of order m € Ny. i) If there exist
k >0 and U an open subset of S*~! on which

+oo
(1) Y I(T)(C) =0 (C,k)
=0

uniformly (in {), then T is zero on U. ii) Conversely, if k > n — 2+ 2m,
then (1) holds uniformly on every closed subset of 8"~ \ supp T

Proof. First, we suppose there exist £ > 0 and U open subset of S?~1
on which (1) holds uniformly. We take ¢ € D(S™!) with suppy C U.
We have

0 - lm N—1+k\(N+k\"
- N—o+oo Snl k k

x I(T) (e (C)do'n 1($)

N -1
. N—1+k\(N+k
= NETOOZ< k )( k )

=0

X / T Zi(¢,m]e(¢)don-1(¢)
Sn—l

N -1
. N—l+k\(N+k
- (0

=0

< T [ 2 n)e(Odon(Q)]

= lim zN: (N _kl " k> (N,j k)_lT[n = I (p) ()]

N—
t 0

= m me (VTR (Y ) o,

=0

by using successively (1), the definition of II;(T), [5, theorem II1.2.b
p.208] on the tensor product of two distributions, the definition of II;(¢)
and the linearity of T. We will now show that

N

. N-Il+E\/N+k\!
N1—1+I-ir-looz< k )( k ) M(p) = ¢

=0
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in the topology of D(S"™1), or, equivalently, that, for all o € N7,
N

. N—l+k\(N+k\" N
Nﬂ;%( & )(k).%mw-%w

uniformly on S"~1. According to [2, 3.6.5 p.129] there exists a constant
¢q depending only on ¢ € Ny and n such that, for all Y € SH;(S™ 1)
and a € N with |a| = g,
sup |DFY (n)] < ¢ "/ 47HY 2.
,,IeSn—l

On the other hand, if ¥ € CQ”(S" 1) (p € No), the Fourier-Laplace
expansion of A¥ep is (=1)P 55 P(1 + n — 2)PI(v) [2, 3.2.11 p.75].
Hence, by Parseval,

P+ n— 2P|z < [|ALY]2.

Combining these two inequalities, we deduce the existence of a constant
Cq,p depending only on ¢, p € Ny and n such that, for all « € Nj with

o) = q,

sup [D§IL(p) ()] < Cgpl™2H-1-29|| AR ||,
nesn—t

Taking p > n/4 + q/2, we see that, for all a € Ng, the series
+00
> DT (p)
1=0

converges uniformly on 8", This has two consequences; firstly, for all
o € N and k£ € Ny,

N
. N—-I1+k\(N+k\
i S () (Y s = X psm

=0

uniformly on S™~!. Secondly, for all a € NZ,

+oo +o00o
> DEI(p) = Dg >_Ti(y).

Indeed, the analogous result on a parallelepiped in R™ is well known;
from it we can deduce the result on 8"~ by noting that D*(y) 1) is
homogeneous of degree —|c| and that a sequence of functions on R\ {0}
homogeneous of the same degree which converges uniformly on S™!
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converges uniformly on every annulus {z € R" : r < ||z|| < R} with
0 <r <1< R. Therefore
N

N-—-I+k\(N+k
li 0 (p) = D§ § :n = Dg
N—lg-loo =0 ( k > ( k ) DS l S i s¥
uniformly on 8”1, From the continuity of T follows
N -1
N-I+k\(N+k

— = T[]

0= lim Tfp— ) ( k ) ( f > () (m)] = Tle]

1=0
Hence T is zero on U.
We will now prove the second part of the theorem. Since

S (YN e

=0

= i (N _kl " k) <N: k)—lT[n = Zi(¢,m)]

1=0
N -1
N—-I+k\/N+k
= Ty ( N ) < X ) Z(¢,m)],
1=0
we must study the function of ({,n) € S*! x 871

axcn =3 (YN aen

=0
For that we will use two properties of the zonals. Firstly, for every
I € Ny there exists a polynomial of degree | in one variable, written
Pl(n-z)/2’ such that, for all ¢, n € S*1,

(2) 21¢,m) = AP (¢l))

n_

[7, theorem 2.14 p.149]. Secondly, we have, for all {, n € S*! and
0<r<li,

1 1—r?
Zi(
wn-1 (1 = 2r({[n) + r2)n/2 ZT ()

[7, theorem 2.10 p.145], from which we deduce, by comparison with [6,
formula (7) p.112], that the series 3 ;% Zi(¢,7), seen as a function of
(¢lm) € [—1,1], is uniformly (C, k)-summable to 0 on [—1,1 — §] (where
0 < 6 < 1 is arbitrary) if and only if £ > n — 2 [6, pp.113-114 and
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145-146]. Hence, for a given ¢ € S™"1, L% ({,n) converges, when N
tends to +o0, to 0 uniformly on every closed set of the form {n € 8" :
d(¢,m) > 6} (where 0 < § < 2) if k > n —2. We fix { € S 1. We want
to differentiate the function n — L% (¢, n). We first note that from the
identity

1—7r2
(1 —2rt + r2)n/2

+oo
=3 rap P
=0

for all ¢t € [~1,1] and 0 < r < 1 follows, differentiating with respect to
t

1—7r? (n—2)/2
(1 — 2t + ,,.2)(n+2)/2 Z’f’ i dt P (t)
that is,

= qdn+2Pn/2 t _+Oo Lgn d P(n—2)/2 ¢
nrgrq q()—grlgil (t),
1=0

q=0

and so, by identifying the coefficients of r9t1, ¢ € Ny,

d pn- “D/2(4) =

+2
—4__ pr/2(y).
d fl+1 dn q

g+1

Then, if e; is the multiindex given by (e;); = 65 (1 < 4,1 < n),
e; dgr1 pn-2)/2
g LD ()
1

dn
= 2L e [P ((Ca/ o)) o=

Wn—~1
n

_ d"“ f, B2/2((¢Cle/2) D% (o /Nl

- d”+2P"/ 2(¢Im)DG In — (Im)]

Wn—1
dn+2 e
= 2r - P”/Z((Cln))D I (¢CIm)-

n+1
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Hence

Dg xL% (¢, m)

N 1
e; N—-I+k\(N+E dl _(n-
=g ("N Loy
=0

Wp—1

N-1 1
& N—qg—1+k\/N+k\ d n
- ok T (T (N) S ey

g=-1
N-—-

_ 01<N R ’f)_lznfﬁp:ﬂ«qmw;f(cm)

q= Wn41

NP

Xf(N T ey

W,
—0 n+1

N e;
= 2m = DY) kL3 (G )

for j = 1,...,n. (Since xL}((,n) depends only on (¢|n), it can be
defined on every space S? x S, ¢ € N.) In a similar way we get, for
every multiindex a # 0,

§ LN (Cm)

e

~ N(N=1)---(N —j+1)
= JZ_;(Q“)J(HN)(HN—1).--(k+N—j+1)
x Qi(¢,m) kLN (¢,m)

if N > |a|, where Q;(¢,n) is a linear combination of products of Dg(( n),
B < a. But for all k € Ng and 5 € N we have

e N(N-1)---(N~-j+1) B
Notoo (k+ N)(k+N—1)--- (k+ N—j+1)

Therefore, given a ¢ € S*1, Dg LR}, (¢,n) converges to 0 uniformly on
{n € S"1:d(¢,n) > 6} (with 0 < § < 2) if we suppose k > n + 2j — 2
for j = 1,...,|al, that is, if K > n — 2 + 2|a|. We take now F closed
in S" 1\ suppT, k >n—2+2m and € > 0. Let r := d(F,suppT) (so
O<r§2);weput

={neS" ! :d(n,suppT) < r/4}.
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Since T is of order m, there exists C > 0 such that, if ¢ € D(S*71),

IT(p)| < C sup sup |Dgp(n)|.
la|<m neK

There exists Ny > 0 such that N > Ny implies

sup  sup |DgiLR(¢,m)| <e/C

le|l<m d{¢,m)>r/4
(where we take D§ with respect to the variable ). We note that, if
(€ FandneK,d(,n) >r/4. Then, for all ( € F and N > Ny,

5 (N i ’“) (N N k)_lm(T)(o

=0

e 32 (V) (M s

1=0

|T[n — Ly (<, n)]|

C sup Sup|DskL <, |
la|<m neK

C sup sup |D§rL}(¢,n)]
la|<m d({,m)>r/4

£.

IA A

A

The theorem is proved. O

REMARK 1. A similar result can be obtained with the summation in
Abel means instead of in Cesaro means; the order of T does not come
up in this case.

REMARK 2. If the support of T is not reduced to a single point, then

(1) holds uniformly on every closed subset of S*~! \suppT as soon as

k > n/2 ~ 1+ m; this follows from the fact that 31 Z,(¢,7), seen

as a function of ({ |n) € [-1,1], is uniformly (C, k)- summable to 0 on

[-1+46,1 — 4] (where 0 < § < 1 is arbitrary) if and only if k > n/2 -1
(6, pp-113-114 and 145-146).

ExAMPLES. First we consider the Dirac measure on a point s € S*~1,
ds. We have

N -1
2 (N —,j ’ k) (N,: k) I (85)(C) = 8s[n — kLR (¢, m)] = kLN (S, 5)-
=0

In ¢ & {s,—s} this converges (to 0) only if £k > n/2 — 1; in { = —s this
converges (to 0) only if £ > n — 2; in { = s this does not converge when
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N — 400, since P"2/2(1) = 1 for all | € Ng [2, (3.3.13) p.82]. Then
we look at a derivative of order 1 of d,: Dg 0s. Fork >n —1,

+o0
S IL(DE 8)(Q) =0 (C,k)
=0

for all ¢ € 8”1 Indeed it suffices to note that
Dg' ds[n— kLN (C,m)] = —ds[Dg x Ly (¢, m)]

= —(53[77 — 2

N €
m S D8 (Chn) e (Gom)]
and that Dg' (¢|n) = {1 — m(¢|n), which implies

Dg 8, > e LYy (¢, m)] = 0
if ( =s.

REMARK 3. If (1) holds uniformly on a subset A of S”71, it holds
uniformly on the closure of A. Therefore, when the interior of supp T is
empty, (1) does not hold uniformly on S™~1 \ supp T'; this is the case in
the examples above.

5. Some rotation-invariant distributions

For this paragraph we fix s € S*~! arbitrarily. We write SO(n), the
stabilizer of s in SO(n); it is isomorphic to SO(n —1). We write S(s, 1)
the sphere of 8”71 with centre s and radius 1; it is the intersection of
S"~! with the subspace of R™ orthogonal to s and can be identified
to 8”2, We say that a distribution T on S™7! is rotation-invariant if
T(pog)=T(p) for all p € D(S" 1) and g € SO(n);. We note that if
T is rotation-invariant, then Ag7 is also rotation-invariant. The vector
space of all rotation-invariant distributions on $"~! supported by S(s, 1)
and of order less or equal to m € Ny has the basis {A% xp—1:2¢—1<
m} U {AL pin—1 : 2¢ < m}, where xn_1 is the indicator function of the
hemisphere {n € 871 : d(s,n) < 1} and p—1 the measure defined by

fin—1(p) = /S o o(n)don—2(n).

We will need a result on x,-1 and another one on u,_; which are
consequences of the Funk-Hecke theorem. On the one hand, if Y €
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SH,(S™1), 1 > 1, then
(3) /S"‘l Xn—l(n)Y(n)do'n-—l(n) = Un-1 Plri/f(o)y(s)’

where vy,_1 is the volume of the unit ball in R*~! [2, 3.4.6 p.102]. On
the other hand, if Y € SH;(S*1), [ > 0, then

@ ma)= [ Y donaln) = s OV (),

[2, 3.4.7 p.103]. Finally we will need the asymptotic behavior of
Pl("—2)/2(t)
when ! tends to +oo depending on t € [—1,1]. First we have
Pl(”"2)/2(1) =1 and Pl("‘2)/2(_1) — (_l)l
for all I € Ng. Then, for 0 < 6 < m,
oo ilg ~ilf
B c0s0) ~ T(n - 1/2) =22y OIS De(O)e

r=0

when [ — +o0, where
Co(0) € +Dy(8) e~ = K cos(l8 + (n — 2)0/2 — w(n — 2)/4),
K being a non-zero constant [8, p.79], [9, p.194].

PROPOSITION 1. Let T' € D'(S™1) be of the form AL pi,—1 (g > 0) or
A% Xn-1 (g > 1) and let m € Ng be the order of T. Take s € S*~! and
k > 0. i) For { € {s, —s}, the Fourier-Laplace series of T in (, is (C, k)-
summable to 0 if and only if k > n/2—1+m. ii) For { € S(s,1)U{s, —s},
the Fourier-Laplace series of T in ( is (C, k)-summable to 0 if and only
if k > m. iii) For ¢ € S(s,1), the Fourier-Laplace series of T in { is
equal to 0 in the case T = A xn—1 but is not (C, k)-summable to 0 for
any k > 0 in the case T = A pp—1.

Proof. We first note that the order of A j1,1 is 2¢ and the order of
A xn-1, 2¢ — 1. Since we already know that the Fourier-Laplace series
of T is (C, k)-summable to 0 in ¢ &€ S(s,1) if & > n/2 — 1+ m, it will
suffice, when ¢ & S(s, 1), to find for which & it is (C, k)-summable. The
function n — Zj({,n) is a spherical harmonic of degree ! [7, p.143] and
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therefore an eigenfunction of Ag with eigenvalue —I(n +1—2) [2, 3.2.11
p.74]. Hence

(AL pa1)(Q) = AL pn—i1ln — Zi(¢, )]

pn—1[n — AL Z1(¢, n)]

= fpin-1[n— (=l(n+1-2))? Zi(¢,n)]
(=0)%(n+1 = 2)? pp_1[n — Zi(¢,n)]
= (=0 n+1-2)M(pn-1)(C);

{l

and for the same reason

Hl(Ag‘, Xn—l)(C) = (_l)q(n +1- 2)q Hl(Xn—l)(C)-
So we only have to study IT;(¢tn—1) and II;(xn—1). From (4) we get
I(pn-1)(C) = tn-1[n— Zi(¢,n)]
= w2 B 2(0)2(¢,9)

- dy -
= w2 B"7(0) = PT((Cls)).

n—1

First we take { € S(s, 1), which means ({|s) = 0. When [ tends to +o0,

M(-)(©) = 222 dp (P2 (0))

n—1
L Wn-2 2 . o
" Wnot (n—2)!l 2[D((n — 1)/2)I~(=2/2)2
Wn—2 2
T wn(n—2) [T((n - 1)/2)]%.

The assertion iii) is established for every distribution A& pin_1. Next
we take ¢ & S(s,1) U {s, —s}, which means ({|s) & {—1,0,1}. We get,
taking 6 €]0, [ such that cos@ = ((|s),

Wnp—-2 2

mo2) [T((n-1)/2)]?

Hl(#n——l)(() ~ Wn1 (n —

+o0
1 . .
~ § : _l? [Ar(g) ezl(0+71'/2) +Br(0) ezl(0—7r/2)
=0

+ C(9) eil(=0+7/2) | D (6) eu(—e—ﬂ/z)]

when [ — +o00. The assertion ii) follows for every distribution AL pu,_1,
using lemma 1, since +0 + 7/2 ¢ {0, 7}. Finally we take { = s, which
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means ({|s) = 1. We get

Mnos)(s) ~ S22 = j [D((n = 1)/2))i=272

y Z ezlﬂ'/2 +D (O) e—ilm/2

r=0

when | — +00. The assertion i) follows for every distribution Ag [n—1,
using lemma 1 and the symmetry between s and —s. The case A xn—1
can be handled similarly, (3) allowing to start with

M) = [ 3w ZCmdas(m)
= U,,_lp,"/f(mzl(c, )
- vn_lp,"/2<o> PR ((¢ls)).

We only treat the case { € S(s,1). Here we have II;(xn-1)(¢) = O for
all I € N, since Pr(n_z)/z(O) =0 if r is odd [2, 3.3.8 p.85]. It follows

400 +00
Zﬂl(Aqs Xn-1)(¢) = Z(‘l)q("+l— 2)? T (xn-1)(C)
=0 =0
= (=0)(n+0—2)Io(xn-1)(¢)
= 0,
which is the assertion iii). O

REMARK 4. The difference in behavior between ¢ € {s,—s} and
¢ & S(s,1)U{s, —s} for the Fourier inversion of these rotation-invariant
distributions is parallel to the one for the Fourier inversion of the func-
tion xn—1 (see [1]).

6. Fourier inversion on the ball

We fix d, m € N. We write B¢ the unit open ball in R? and put, for
all z € BY,
W (z) = wm(1 - [|z]|?)™~272,

- -1 T((m+d)/2
umi= | [ 0= lepym-dia| - TGO/

where
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[11, (2.3)]. On L?(B¢, W (z)dx) we define the scalar product

mWF/f (z)da

We write V;(B%) the vector space of all polynomials on R? of degree
l € Ny which are orthogonal, with respect to (.|. )y, to all polynomials

of inferior degree; we write its dimension 7, = rf. Let (QY, ..., Qil) be
an orthonormal basis of V;(B¢). For f € L?(B¢, W (z)dz), the series
+oo 7y
DD (1@ @,
1=0 j=1

called Fourier series of f (with respect to W), converges to f in L?(B¢,
W (z)dx). We write
]

2i(f) =D (F1Q5)w Q)

j=1
the orthogonal projection of f on V;(B%). For x € B? we have
2@ = [ 2EOrOwEE

where .
=Y Qi=)Q4(®)
j=1

is the reproducing kernel of Vi(B?%). We write £(B®) the set of distri-
butions on R¢ with support in B%. For 7 € £(B?), the Fourier series
of T (with respect to W) is

+oc T - +o0
I H@EW)QL = Ei(r),
1=0 j=1 =0

with, for z € B9,
Ei(7)(z) := 7€ - Ey(z, W ()]

THEOREM 2. Let 7 € £ (B%) be of order p € Ny. 1) If there exist
k > 0 and U an open subset of B% on which

+oc0

(5) S E(r)(@) =0 (C,k)

=0
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uniformly (in z), then T is zero on U. ii) Conversely, if k > (d+m)/2 —
1+ p, then (5) holds uniformly on every closed subset of B*\ supp .

Proof. From 7 we construct a distribution T on S%+™~1 by
W(z)
Wm—1
for all p € D(S4™1), withz € BY(SY = {—1,1} and wy " fgo ¥(n)doo(n)
means (¢(—1)+(1))/2). Tedious but straightforward calculations show

that T is indeed a distribution, that its order is equal to the order of
and that

T(p) :=1lz— 1 - [|=l[? n)dom-1(n)]

suppT = (supp7 x R™) N §4+m-1,
We will now use the link established by [11, theorem 2.6] between the
zonal of degree I on S+~ and the reproducing kernel of V;(B%):

- Watm—
Sie,§) = 222 [ 2 (6 VT TEP ) door (o)
with z, £ € B? and ¢ := (z,y) € S“*™ 1, where y € R™ must only
satisfy the condition ||z||?+]||y[|> = 1. From this we immediately deduce:
Ei(7) ()
= 7§~ Eilz, W(E)]

= rlem WO [ 2, (6 VT TEF oroa ()

m—1

= warm-1T[z — Zi((, 2)]

= warm-1IL(T)(C)
where ¢ := (z,y) € S¥™~1. Therefore the (C, k)-summability of the
Fourier series of 7 in x, ;% Zi(7)(z), is equivalent to the (C,k)-
summability of the Fourier-Laplace series of T in { = (z,y),

+o0
> Im(T)(Q)-

=0
The conclusion follows from theorem 1 and remark 2. ad

7. Fourier inversion on the real projective space

We write ¢ : S*~! — S"~1 (n > 2) the antipodal map ¢(z) := —z and
P"~1(R) the real projective space of dimension n — 1, that is, S*~1/().
A function f on 8" is even if f = fo. and odd if f = —f ot. Every



Fourier inversion of distributions on the sphere 771

function f on 8”1 is sum of its even and odd parts: f. := (f + for)/2
and f, := (f — f o1)/2. To every even function f on S"~! corresponds
one and exactly one function f on P*~1(R) by f (z) = f(n(z)), where
7 : 8”1 — P""1(R) is the canonical map. A distribution 7 on 8"~ is
even if T(p) = T(p o) for all ¢ € D(S™1); in that case T(p) = T(pe)
and T'(y,) = 0. Since Pl(n_z)/ ? is even for [ even and odd for { odd (this
follows from [2, (3.3.26) p.89] and P\"2/2 = 1, pI"=2/2(t) = 1), the
zonal Z;({,n) is, in each variable, even for [ even and odd for [ odd, by
(2). Hence, given T € D'(S™~1) even, we have, for all ¢ € S*~!,

I(T)(C) = Tln— Zi(¢,m)] =0

if [ is odd; moreover,

M (TH—=C) = T — Za(—¢,m)] = Tl — Za(¢,n)] = Tu(T)(C),

that is, IIy(T) is even. We now take a distribution T on P" !(R).

From it we construct a distribution T on "~ by T(y) := T(@s) for all
¢ € D(S"1); T is even and therefore has the Fourier-Laplace series

+o0
> ().
=0

Since each of the functions in this series is even, we can go back to
P"~1(R) and obtain in this way the Fourier-Laplace series of T

+oc0
Z o (T).
=0

THEOREM 3. Let T € D'(P"Y(R)) be of order m € Ny. i) If there
exist k > 0 and U an open subset of P"~(R) on which

+oo
(6) d Tu(T)(¢) =0 (C,k)
=0

uniformly (in ¢), then T is zero on U. ii) Conversely, if k > n/2—1+m,
then (6) holds uniformly on every closed subset of P*~}(R) \ suppT.

Proof. This follows from the above discussion, theorem 1 and remark
2. |
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