다중필터 리프팅 방식을 이용한 고성능 라인기반 필터링 구조

High-Performance Line-Based Filtering Architecture Using Multi-Filter Lifting Method

  • 서영호 (광운대학교 전자재료공학과) ;
  • 김동욱 (광운대학교 전자재료공학과)
  • 발행 : 2004.08.01

초록

본 논문에서는 Motion JPEG2000 등의 이산 웨이블릿 기반의 고속 영상처리를 위해서 리프팅 방식의 효율적인 H/W 구조를 제안하였다. 리프팅 내부연산의 반복성을 이용하여 알고리즘 레벨에서 구조적인 사상을 적용하고 데이터 스케줄링을 이용하여 최적화되고 간략화된 리프팅 기반의 필터링 셀의 구조를 제안한다. 이를 바탕으로 (9,7) 및 (5,3) 필터를 모두 수용할 수 있는 리프팅 커널의 구조를 구현하였다. 제안된 리프팅 커널은 일정 대기지연 시간 후에 연속적으로 데이터를 출력할 수 있는 간략화된 구조를 갖고 있다. 시간적인 순서로 입력되는 데이터에 대해서 일정한 출력을 발생할 수 있기 때문에 단순히 H/W를 추가하면 병렬적인 동작을 통해서 높은 출력율을 간단히 얻을 수 있다. 본 논문에서 제안된 리프팅 커널은 ASIC 및 FPGA 환경으로 모두 구현하였는데, ASIC으로는 삼성전자의 0.35㎛ CMOS 라이브러리를 이용하여 구현하였고 FPGA은 Altera사의 APEX을 타겟으로 하였다. ASIC의 경우 리프팅 연산을 위해 41,592개의 게이트 수와 라인 버퍼링을 위한 128Kbit의 메모리를 사용하였으며, FPGA의 경우 6,520개의 LE(Logic Element)와 128개의 ESB(Embedded System Block)을 사용하였다. 각각의 경우에 대해서 125MHz와 52MHz의 속도에서 안정적으로 동작할 수 있었다.

In this paper, we proposed an efficient hardware architecture of line-based lifting algorithm for Motion JPEG2000. We proposed a new architecture of a lifting-based filtering cell which has an optimized and simplified structure. It was implemented in a hardware accommodating both (9,7) and (5,4) filter. Since the output rate is linearly proportional to the input rate, one can obtain the high throughput through parallel operation simply by adding the hardware units. It was implemented into both of ASIC and FPGA The 0.35${\mu}{\textrm}{m}$ CMOS library from Samsung was used for ASIC and Altera was the target for FRGA. In ASIC, the proposed architecture used 41,592 gates for the lifting arithmetic and 128 Kbit memory. For FPGA it used 6,520 LEs(Logic Elements) and 128 ESBs(Embedded System Blocks). The implementations were stably operated in the clock frequency of 128MHz and 52MHz, respectively.

키워드

참고문헌

  1. O. Rioul and M. Vetterli, 'Wavelets and Signal Processing,' IEEE Signal Processing Magazine, pp. 14-38 https://doi.org/10.1109/79.91217
  2. M. Ravasi, et al., 'Wavelet Image Compression for Mobile/Portable Applications,' IEEE Trans. on Consumer Electronics, Vol. 45, No. 3, pp. 794-803, August 1999 https://doi.org/10.1109/30.793608
  3. A. Grezeszczak, et al., 'VLSI Implementation of Discrete Wavelet Transform,' IEEE Trans. on VLSI Systems, Vol. 4, No. 4, pp. 421-433, 1996 https://doi.org/10.1109/92.544407
  4. Po-Cheng Wu and Liang-Gee Chen, 'An Efficient Architecture for Two-Dimensional Discrete Wavelet Transform,' IEEE Trans. on Circuits and Systems for Video Technology, Vol. 11, No. 4, pp. 536-545, 2001 https://doi.org/10.1109/76.915359
  5. W. Sweldens, 'The lifting scheme: A customdesign construction of biorthogonal wavelets,' J. Appl. Comp. Harm. Anal., vol. 3, no. 2, pp. 186-200, 1996 https://doi.org/10.1006/acha.1996.0015
  6. W. Jiang and A. Ortega, 'Lifting factorization-based discrete wavelet transform architecture design,' IEEE Trans, Circuits Syst. Video Technol., vol. 11, pp. 651-657, May 2001 https://doi.org/10.1109/76.920194
  7. C. Diou, L. Torres, and M. Robert, 'A Wavelet core for video processing,' presented at the IEEE Int. Conf. Image Process, Sept. 2000
  8. G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, and I. Bolsens, 'Optimal memory organization for scalable texture codecs in MPEG-4,' IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 218-243, Mar. 1999 https://doi.org/10.1109/76.752091
  9. M. Vishwanath, R. Owens, and M. J. Irwin, 'VLSI architectures for the discrete wavelet transform,' IEEE Trans. Circuits Syst. II, vol. 42, pp, 305-316, May 1995 https://doi.org/10.1109/82.386170
  10. J. S. Fridman and E. S. Manolakos, 'Discrete wavelet transform:Data dependence analysis and synthesis fo distributed memory and control array architectures,' IEEE Trans. Signal Processing, vol. 45, pp. 1291-1308, May 1997 https://doi.org/10.1109/78.575701
  11. T. Acharya,'A high speed systolic architecture for discrete wavelet transforms,' in Proc. IEEE Global Telecommun. Conf., vol. 2, 1997, pp. 669-673
  12. K. K. Parhi and T. Nishitani, 'VLSI architectures for discrete wavelet transforms,' IEEE Trans. VLSI Syst., vol. 1, pp. 191-202 https://doi.org/10.1109/92.238416
  13. A. Grzeszczak, M. K. Mandal, S. Panchanathan, and T. Yeap, 'VLSI implementation of discrete wavelet transform,' IEEE Trans. VLSI Syst., vol. 4, pp. 421-433, June 1996 https://doi.org/10.1109/92.544407
  14. G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, and I. Bolsens, 'Optimal memory organization for scalable texture codecs in MPEG-4,' IEEE Trans. Circuits Syst. Video Technol., vol. 9. pp. 218-243, Mar. 1999 https://doi.org/10.1109/76.752091
  15. M. Ferretti and D. Rizzo, 'A parallel architecture for the 2-D discrete wavelet transform with integer lifting scheme,' J. VLSI Signal Processing, vol. 28, pp. 165-185, July 2001 https://doi.org/10.1023/A:1011161423836
  16. K. Andra, C. Chakrabarti, and T. Acharya, 'A VLSI architecture for lifting-based forward and inverse wavelet transform,' IEEE Trans. on Signal Processing, vol. 50, no. 4, April 2002
  17. G. Dillen, B. Georis, J. D. Legat, and O. Cantineau, 'Combined Line-Based Architecture for the 5-3 and 9-7 Wavelet Transform of JPEG 2000,' IEEE Transactions on Circuit Syst. Video Technol., vol. 13, no. 9, Sep. 2003 https://doi.org/10.1109/TCSVT.2003.816518
  18. http://www.barco.com/subcontracting/Downloads/IPProducts/BA113FDWTFactS-heet.pdf
  19. http://www.cast-inc.com/cores/rc_2ddwt/rc_2ddwt-a.pdf
  20. http://www.cast-inc.com/cores/1b_2dfdwt/1b_2dfdwt-x.pdf
  21. http://www.cast_inc.com/cores/bb_2dfdwt/cast_bb_2dfdwt-x.pdf
  22. http://www.amphion.com/cs6210.html
  23. I. Daubechies and W. Sweldens, 'Factoring walet transforms into lifting schemes,' J. Fourier Anal. Appl., vol. 4, pp. 247-269 https://doi.org/10.1007/BF02476026
  24. W. Sweldens, 'The lifting scheme: A new philosophy in biorthogonal wavelet construcons,' Proc. SPIE, vol. 2569, pp. 68-79 https://doi.org/10.1117/12.217619