Cloning and Characterization of the Lactate Dehydrogenase Genes from Lactobacillus sp. RKY2

  • Lee, Jin-Ha (Engineering Research Institute) ;
  • Choi, Mi-Hwa (Department of Material and Biochemical Engineering) ;
  • Park, Ji-Young (Department of Material and Biochemical Engineering) ;
  • Kang, Hee-Kyoung (Engineering Research Institute) ;
  • Ryu, Hwa-Won (School of Biological Sciences and Technology and Research Institute for Catalysis) ;
  • Sunwo, Chang-Sin (School of Biological Sciences and Technology and Research Institute for Catalysis) ;
  • Wee, Young-Jung (Department of Material and Biochemical Engineering) ;
  • Park, Ki-Deok (Korea Basic Science Institite Gwang-Ju Barnch, Chonnam National University) ;
  • Kim, Do-Won (Department of Physics, Kangnung National University) ;
  • Kim, Do-Man (Engineering Research Institute, School of Biological Sciences and Technology and Research Institute for Catalysis, Biology Research Center for Industrial Accelerator, Dongshin University)
  • 발행 : 2004.07.01

초록

Lactic acid is an environmentally benign organic acid that could be used as a raw material for biodegradable plastics if it can be inexpensively produced by fermentation. Two genes (ldhL and ldhD) encoding the L-(+) and D-(-) lactate dehydrogenases (L-LDH and D-LDH) were cloned from Lactobacillus sp., RKY2, which is a lactic acid hyper-producing bacterium isolated from Kimchi. Open reading frames of ldhL for and ldhD for the L and D-LDH genes were 962 and 998 bp, respectively. Both the L(+)- and D(-)-LDH proteins showed the highest degree of homology with the L- and D-lactate dehydrogenase genes of Lactobacillus plantarum. The conserved residues in the catalytic activity and substrate binding of both LDHs were identified in both enzymes.

키워드

참고문헌

  1. FEBS Lett. v.290 Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli Bernard, N.;T. Ferain;D. Garmyn;P. Hols;J. Delcour https://doi.org/10.1016/0014-5793(91)81226-X
  2. Genet. Eng. News. v.12 Natural lactic acid produced from whey by Ecochem. Potera, C.
  3. Bioprocess Eng. v.2 Production of mannitol using Leuconostoc mesenteroides B-1149 Kim, C. Y.;J. H. Lee;B. H. Kim;S. K. Yoo;E. S. Seo;K. S. Cho;D. F. Day;D. Kim
  4. Biotechnol. Bioprocess Eng. v.8 Transglycosylation reaction and raw starch hydrolysis by novel carbohydrolase from Lipomyces starkeyi Lee, J. H.;S. O. Lee;G. K. Lee;E. S. Seo;S. S. Chang;S. K. Yoo;D. W. Kim;D. F. Day;D. Kim https://doi.org/10.1007/BF02940265
  5. Kor. J. Biotechnol. Bioeng. v.18 Simple and quantitative analysis method for lactic acid by TLC Choi, M. H.;K. S. Cho;H. K. Kang;J. S. Yun;E. S. Seo;H. W. Ryu;S. H. Chang;S. H. Yoon;D. Kim
  6. Enzyme Microb. Technol. v.33 Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1 Yun, S. Y.;Y. J. Wee;H. W. Ryu https://doi.org/10.1016/S0141-0229(03)00139-X
  7. Food Microbiol. v.8 Effect of salt and culture aeration on lactic and acetate production by Lactobacillus plantarum Bobillo, M.;V. M. Marshall https://doi.org/10.1016/0740-0020(91)90008-P
  8. J. Microbiol. Biotechnol v.10 Cloning and sequencing of the α-1→6 dextransucrase genes from Leuconostoc mesenteroides Kim, H. S.;D. Kim;H. J. Ryu;J. F. Robyt
  9. Biotechnol. Lett. v.22 Cloning of dextransucrase gene (fmcmds) from a constitutive dextransucrase hyper-producing Leuconostoc mesenteroides B-512FMCM developed using VUV Ryu, H. J.;D. Kim;D. W. Kim;Y. Y. Moon;J. F. Robty https://doi.org/10.1023/A:1005609718173
  10. Molecular Cloning: A Laboratory Manual(3rd. ed.) Sambrook, J.;E. F. Fritisch;T. Maniatis
  11. Proc. Natl. Acad. Sci. USA v.69 Nonchrosomal antobiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA Cohen, S. N.;A. C. Y. Chang;L. Hsu https://doi.org/10.1073/pnas.69.8.2110
  12. J. Biol. Chem. v.266 Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarum Taguchi, H.;T. Ohta
  13. J. Biol. Chem. v.260 Processing of Bacillus cereus 569/H β-lactamase Ⅰ in Escherichia coli and Bacillus substilis Mezes, P. S. F.;R. W. Blacher;J. O. Lampen
  14. J. Biochem. v.115 Essential role of arginine 235 in the substrate-binding of Lactobacillus plantarum D-lactate dehydrogenase Taguchi, H.;T. Ohta https://doi.org/10.1093/oxfordjournals.jbchem.a124441
  15. Enzymes(3rd ed.) Lactate dehydrogenase Holbrook, J. J.;A. Lilijas;S. J. Steindal;M. G. Rossmann;P. D. Boyer, P. D.(ed.)
  16. Trends Biochem. Sci. v.14 From analysis to synthesis: new ligand binding sites in the lactate dehydrogenase framework Clarke, A. R.;T. Atkinson;J. J. Holbrook https://doi.org/10.1016/0968-0004(89)90131-X
  17. J. Biol. Chem. v.268 Histidine 296 is essential for the catalysis in Lactobacillus plantarum D-lactate dehydrogenase Taguchi, H.;T. Ohta
  18. J. Biol. Chem. v.258 The presence of a histidine-aspartic acid pair in the active site of 2-hydroxyacid dehydrogenases. X-ray refinement of cytoplasmic malate dehydrogenase Birktoft, J. J.;L. J. Banaszak
  19. Biochemistry v.27 An investigation of the contribution made by the carboxylate group of an active site histidine-aspartate couple to binding and catalysis in lactate dehydrogenase Clarke, A. R.;H. M. Wilks;D. A. Barstow;T. Atkinson;W. N. Chia;J. J. Holbrook https://doi.org/10.1021/bi00405a034
  20. Biochem. Biophys. Acta v.914 A strong carboxylate-arginine interaction is important in substrate orientation and recognition in lactate dehydrogenase Hart, K. W.;A. R. Clarke;D. B. Wigley;A. D. B. Waldman;W. N. Chia;D. A. Barstow;T. Atkinson;J. B. Jones;J. J. Holbrook https://doi.org/10.1016/0167-4838(87)90289-5