Direct Fermentation of Potato Starch in Wastewater to Lactic Acid by Rhizopus oryzae

  • Huang, Li-Ping (School of Environmental and Biological Science and Technology, Dalian University of Technology, Department of Chemical Engineering, The University of Queensland, St Lucia) ;
  • Bo Jin (Department of Chemical Engineering, The University of Queensland, St Luci) ;
  • Paul Lant (Department of Chemical Engineering, The University of Queensland, St Luci) ;
  • Xianliang Qiao (School of Environmental and Biological Science and Technology, Dalian University of Technolog) ;
  • Jingwen Chen (School of Environmental and Biological Science and Technology, Dalian University of Technolog) ;
  • Wence Sun (Department of Power Engineering, Dalian University of Technology)
  • Published : 2004.07.01

Abstract

The fungal species of Rhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/ L at pH 6.0 and 30$^{\circ}C$ was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%∼85.5% associated with 1.5∼2.0 g/L fungal biomass produced in 36 h of fermentation.

Keywords

References

  1. FEMS Microbiol. Rev. v.16 Technological and economic potential of poly (lactic acid) and lactic acid derivatives Datt, R.;S. P. Tsai;P. Bonsignor;S. Moon;J. Frank https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
  2. Appl. Microbiol. v.52 Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis Hofvendahl, K.;C. Akerberg;G. Zacchi
  3. Egyptian J. Microbiol. v.36 Lactic acid production by interspecific hybrids of Rhizopus strains from potato processing peel waste Khalaf, S. A.
  4. J. Ferment. Bioeng. v.84 Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor Yin, P.;N. Nishina;Y. Kosakai;K. Yahiro;Y. Park;M. Okabe https://doi.org/10.1016/S0922-338X(97)82063-6
  5. Appl. Microbiol. Biotechnol. v.49 Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production gy Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour Akerberg, C.;K. Hofvendahl;G. Zacchi;B. Hahn-Hagerdal https://doi.org/10.1007/s002530051232
  6. Adv. Biochem. Eng. Biotechnol. v.65 Production of multifunctional organic acids from renewable resources Tsao, G. T.;N. J. Cao;J. Du;C. S. Gong
  7. J. Agri. Eng. Res. v.71 Biotechnological conversion of sugar and starchy crops into lactic acid Richter, K.;C. Berthold https://doi.org/10.1006/jaer.1998.0314
  8. Curr. Opin. Biotechnol. v.11 Metabolic engineering applications to renewable resource utilization Aristidous, A.;M. Penttila https://doi.org/10.1016/S0958-1669(00)00085-9
  9. J. Ind. Microbiol. v.7 Lactic acid production from enzymethinned corn starch using Lactobacillus amylovorus Cheng, P.;R. E. Mueller;S. Jaeger;R. Bajpai;E. L. lannotti https://doi.org/10.1007/BF01575599
  10. J. Ferment. Bioeng. v.81 Production of L(+) and D(-) lactic acid isomers by Lactobacillus casei subsp. casei DSM 20011 and Lactobacillus coryniformis subsp. torquens DSM 20004 in continuous fermentation Gonzalez-Vara, A.;D. Pinelli;M. Rossi;D. Fajner;F. Magelli;D. Matteuzzi https://doi.org/10.1016/0922-338X(96)81478-4
  11. World J. Microbiol. Biotechnol. v.18 Direct fermentation of various pure and crude starchy substrates to L(+) lactic acid using Lactobacillus amylophilus GV6 Vishnu, C.;G. Seenayya;G. Reddy https://doi.org/10.1023/A:1015526221744
  12. World J. Microbiol. Biotechnol. v.10 Production of L-lactic acid by Rhizopus species Soccol, C. R.;V. I. Stonoga;M. Raimbault https://doi.org/10.1007/BF00144467
  13. Acta Biotechnol. v.15 Physiological restriction of the L-lactic acid production by Rhizopus arrhizus Rosenberg, M.;L. Kristofikova https://doi.org/10.1002/abio.370150409
  14. Proceedings of the Bioconversion Symposium, Ⅲ A method for production of alcohol directly from cellulose using cellulase and yeast Takagi, M.;S. Abe;S. Suzuki;G. H. Emert;N. Yata
  15. Biotechnol. Lett. v.11 Kinetics of direct fermentation of agricultural commodities to L(+)-lactic acid by Rhizopus oryzae Yu, R. C.;Y. D. Hang https://doi.org/10.1007/BF01040043
  16. Appl. Biochem. Biotechnol. v.77-79 Optimization of L-Lactic acid production from glucose by Rhizopus oryzae ATCC 52311 Zhou, Y.;J. M. Dominguez;N. Cao;J. Du;G. T. Tsao
  17. Enzyme Microb. Technol. v.28 RT-PCR amplification of a Rhizopus oryzae lactate dehydrogenase gene fragment Hakki, E. E.;M. S. Akkaya https://doi.org/10.1016/S0141-0229(00)00319-7
  18. J. Chem. Technol. Biotechnol. v.76 Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation Moldes, A. B.;J. L. Alonso;J. C. Parajo https://doi.org/10.1002/jctb.381
  19. Proc. Biochem. v.34 Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater Jin, B.;J. van Leeuwen;B. Patel;H. Doelle;Q. Yu https://doi.org/10.1016/S0032-9592(98)00069-7
  20. J. Chem. Technol. Biotechnol. v.76 A bioprocessing mode for fungal biomass protein production and wastewater treatment using external air-lift bioreactor Jin, B.;Q. Yu;J. van Leeuwen https://doi.org/10.1002/jctb.486
  21. Enzyme Microb. Technol. v.26 The influence of lactic acid formation on the simultaneous saccharification and fermentation of softwood to ethanol Stenberg, K.;M. Galbe;G. Zacchi https://doi.org/10.1016/S0141-0229(99)00127-1
  22. Colorimetric Chemical Analytical Methods(2th ed.) Tomas, L. C.;G. J. Chamberlain
  23. Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller, G. L. https://doi.org/10.1021/ac60147a030
  24. Appl. Biochem. Biotechnol. v.70-72 An integrated bioconversion process for production of L-lactic acid from starchy potato feed stocks Tsai, S. P.;S. H. Moon https://doi.org/10.1007/BF02920157
  25. Curr. Microbiol. v.45 Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae Oda, Y.;K. Saito;H. Yamauchi;M. Mori https://doi.org/10.1007/s00284-001-0048-y
  26. Biotechnol. Lett. v.21 Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid Iyer, P. V.;Y. Y. Lee https://doi.org/10.1023/A:1005435120978
  27. Enzyme Microb. Technol. v.26 Factors affecting the fermentative lactic acid production from renewable resources Hofvendahl, K.;B. Hahn-Hagerdal https://doi.org/10.1016/S0141-0229(99)00155-6
  28. Appl. Biochem. Biotechnol. v.51-52 Latic acid production by pellet-form Rhizopus oryzae in a submerged system Yang, C. W.;Z. J. Lu;G. T. Tsao https://doi.org/10.1007/BF02933411