A Study on the Effect of Physical Stimuli on Bone Cell Differentiation Using a Hybrid Bioreactor

Hybrid Bioreactor를 이용한 물리적 자극에 대한 세포반응 연구

  • 이창양 (한국과학기술연구원 의과학연구센터, 고려대학교 공과대학 기계공학과) ;
  • 최귀원 (한국과학기술연구원 의과학연구센) ;
  • 홍대희 (고려대학교 공과대학 기계공학과)
  • Published : 2004.08.01

Abstract

in this study, hybrid bioreactor was used to apply physical stimuli in cell culture. Effect of the applied physical stimuli on the growth and differentiation of MC3T3-El cell in a three-dimensional Chitosan scaffold were studied by using the hybrid bioreactor. The hybrid bioreactor for physical stimulus was specially designed to apply uniaxial cyclic compressive and shear strain. Physical stimulus was applied over a period of 14 days with 150 cycles per day at a frequency of 0.5Hz. Strain magnitude was 2.5% of the scaffold size. Control group and physically stimulated group of the MC3T3-El tell were incubated and harvested at the indicated times (Day 6, 8, 10, 12, 14). The total amount of protein, which obtained information of cell growth, was determined by Lowey method. Alkaline phosphatase activity was examined by ELISA. Physically stimulated group using the hybrid bioreactor was increased in alkaline phosphatase activity comparing with control group. The nodule formation and calcium deposit of the physical stimuli group which resulted in cell differentiation was faster than that of control group.

본 연구에서는 세포배양을 위해 개발된 복합생물반응기(Hybrid bioreactor)의 배양조건의 유효성을 평가하고, 3차원 키토산 지지체 (Chitosan-Scaffold Sponge Type)에 배양된 세포에 Hybrid Bioreactor를 이용한 물리적 자극에 대한 반응을 실험하였다. Hybrid bioreactor는 압축변형과 전단변형을 동시에 가할 수 있도록 제작되었다. 본 실험에서는 지지체 크기의 2.5% 변형으로 14일간 150회씩 0.5Hz 로 물리적 자극을 가하였다. 14일간 배양한 세포군은 일정 날짜에 샘플링 (sampling) 하였다. (Day 6, 8, 10, 12, 14). 세포 성장 정도를 알 수 있는 전체 단백질 양을 Lowey의 방범으로 분석하였으며, 분화의 시작을 알리는 표적단백질인 알카라인 포스파타제(Alkaline phosphatase)양을 ELISA로 측정하였다. Hybrid bioreactor를 이용하여 물리적 자극을 가한 군은 자극을 가하지 않은 군에 비하여 표적단백질의 형성을 촉진하였으며, 자극을 가한 관에서 사극을 가하지 않은 군에 비해 빠른 칼슘침착을 나타내었다.

Keywords

References

  1. Orthopaedic Basic Science Simon
  2. Structure, Function and Adaption of Compact bone Martin;Burr
  3. Cell and Biomechanics F. Lyall;A.J. EL Haj
  4. Biomaterial v.17 Evolution of bone transplantation : molecular, cellular and tissue strategies to engineer human bone Yaszemski, M.J.;Payne, R.G.;Hayes, W.C. https://doi.org/10.1016/0142-9612(96)85762-0
  5. Tissue Engineering v.6 Engineered bone development form a pre-Osteoblast cell line on three-dimensional scaffolds Lonnie D.Shea;Dian Wang https://doi.org/10.1089/10763270050199550
  6. Anat Rec v.262 From Wolff's Law to the Uthah Paradigm : Insights About Physiology and Its Clinical Applications Frost HM. https://doi.org/10.1002/ar.1049
  7. Principles of Bone Biology Joha P. Bilezikian;Lawrence G. Raisz;Gideon A. Rodan
  8. Biomaterials v.22 Biomaterial and bone mechano transduction Vassilios I. Sikavitsas;Johnna s. Temenoff;Antonios G. Mikos https://doi.org/10.1016/S0142-9612(01)00002-3
  9. Journal of Cellular Biochem v.61 Expression Patterns of Bone-Related Proteins During Osteoblastic Differentiation in Cells Je-Yong Choi;Byung-Heon Lee;In-San Kim https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4<609::AID-JCB15>3.0.CO;2-A
  10. Bone v.22 Primary Osteoblast Proliferation and Prostaglandin E2 Release in Response to Mechanical Strain In Vitro B. Fermor;R. Gundle;M. Evans;M. Emerton;A. Pocock https://doi.org/10.1016/S8756-3282(98)00047-7
  11. Journal of Cellular Physiology v.142 Effect of a continuously applied compressiveon Mouse Osteoblast-LikeCells (MC3T3-E1) In Vitro H. Ozawa;K. Imamura https://doi.org/10.1002/jcp.1041420122
  12. Osteoporosis Int. v.12 Mechanical Effects on the skeleton: Are there Clinical Implications? M. R. Forwood https://doi.org/10.1007/s001980170161
  13. Acta histochem. v.82 Immunohistochemical of alkaline phosphatase in growth plate cartilage, bone and fetal calf chondrocytes using monoclonal antibodies Vaanane, K.;Morris, D.;Munoz, PA;Parvinen, EK https://doi.org/10.1016/S0065-1281(87)80032-6
  14. Journal of Cellular Physiology v.170 Stimulation of Osteopontic mRNA Expression and Synthesis in Bone Cell Cultures Jenneke klein-nulend;Jan roelofsen;Cornelis M. Semeins https://doi.org/10.1002/(SICI)1097-4652(199702)170:2<174::AID-JCP9>3.0.CO;2-L
  15. Journal of Biomechanics v.34 A model for strain amplification in the actin cytoskeletonosteocytes due to fluid drag on precellular matirix Lidan You;Stephen C. Cowin;Mitchell B. Schaffler;SheldenWeinbaum https://doi.org/10.1016/S0021-9290(01)00107-5