코일 위치에 따른 동맥류 내부 혈류유동의 변화

Intraaneurysmal Blood Flow Changes for the Different Coil Locations

  • 이계한 (명지대학교 공과대학 기계공학부) ;
  • 정우원 (명지대학교 공과대학 기계공학부)
  • 발행 : 2004.08.01

초록

코일을 동맥류에 삽입하여 동맥류 내부 유동 정체를 유발하므로 동맥류를 치료 방법이 최근 많이 사용되고있다. 동맥류의 내부를 코일로 완전히 채우지 못하고 부분 폐색할 경우가 발생하며, 동맥류의 부분 폐색 위치에 따라 혈류 유동이 변하므로 이는 동맥류 내부의 혈전 형성에 영향을 미필 수 있다. 또한 동맥류가 발생한 모혈관의 형상에 따라 동맥류로 유입되는 유동 특성이 변하므로, 모혈관의 형상에 따라 효율적인 동맥류 폐색을 위한 코일의 위치가 변할 수 있다. 효율적인 동맥류 폐색을 위한 코일 위치를 제시하기 위하여 내경 동맥에서 발생한 측방 동맥류의 부분 폐색위치와 내경 동맥의 형상에 따른 동맥류 내부 유동장을 수치해석을 이용하여 해석하였다. 3차원 맥동 유동장은 혈액의 비뉴톤성 점성 특성을 고려하여 계산되었다. 또한 동맥류 폐색에 영향을 미치는 유체역학적 인자인 동맥류 유입 유량 및 벽전단응력을 계산하였다. 코일은 동맥류 목에 삽입하였을 경우에는 천정부에 삽입한 경우에 비해 동맥류 내부로 혈류의 유입을 감소되었다. 임계 벽전단응력 이하의 저 전단응력지역은 곡선형 모혈관에 비해 직선형 모혈관에서 컸으며, 원위부 목 폐색 모델에서 가장 크게 나타났다. 따라서 동맥류 원위부 목은 동맥류 내부로의 혈류 유입이 감소하고, 저 전단응력 지역을 크게하는 코일 위치이므로, 이 위치는 동맥류 색전술시 혈전의 형성으로 인한 동맥류 폐색에 적합한 위치로 예상된다.

Coil embolization technique has been used recently to treat cerebral aneurysms. When a giant or a multilobular aneurysm are treated by roils, filling an aneurysm sac completely with coils is difficult and partial blocking of an aneurysm sac is inevitable. Blood flow characteristics, which nay affect the embolization process of an aneurysm sac, are changed by the locations of coils for the Partially blocked aneurysms. Blood flow fields are also influenced by the geometry of a parent vessel. In order to suggest the coil locations effective for aneurysm embolization, the blood flow fields of lateral aneurysm models were analyzed for the different coil locations and parent vessel geometries. Three dimensional pulsatile flow fields are analyzed by numerical methods considering non-Newtonian viscosity characteristics of blood. Flow rate into the aneurysm sac (inflow rate) and wall shear stress, which are suspected as flow dynamic factors influencing aneurysm embolization, are also calculated. Inflow rates were smaller and the low wall shear stress zones were larger in the neck blocked models compared to the dome blocked models. Smaller inflow and larger low wall shear stress zones in the distal neck blocked model imply that the distal neck should be the effective coil locations for aneurysm embolization.

키워드

참고문헌

  1. J. Neurosurgery v.70 Regrowth of aneurysm sacs from residual neck following clipping T. Lin;A.J. Fox;C.G. Drake https://doi.org/10.3171/jns.1989.70.4.0556
  2. Fed. Proc. v.30 Platelet adhesion to artificial surfaces: Consequences of flow, exposure time, blood condition and surface nature L. Friedman;E. Leonard
  3. Neuroradiology v.36 In vitro study of hemodynamics in a giant saccular aneurysm model: Influence of flow dynamics in the parent vessel and effects of coil embolization Y.P. Gobin;J.L. Counord;P. Flaud;J. Duffaux https://doi.org/10.1007/BF00593516
  4. Med. Eng. & Phys. v.23 Platelet deposition in stagnation point flow: an analytical and computational simulation T. David;S. Thomas;P.G. Walker https://doi.org/10.1016/S1350-4533(01)00047-9
  5. Biorheology v.21 Role of blood cell-wall interactions in thrombogenesis and atherogenesis: a microrheological study T. Karino;H. Goldsmith https://doi.org/10.3233/BIR-1984-21417
  6. Ann. Rev. Biomed. Eng. v.1 Fluid mechanics of vascular systems, diseases, and thrombosis D.M. Wotton;D.N. Ku https://doi.org/10.1146/annurev.bioeng.1.1.299
  7. J. Biomech. v.36 Comparison of blood particle deposition models for non-parallel flow domains P.W. Longest;C. Kleinstreuer https://doi.org/10.1016/S0021-9290(02)00434-7
  8. Art. Org. v.19 Fluid mechanics of the satgantion point flow chamber and its platelet deposition K. Affeld;A.J. Reininger;J. Gadischke;K. Grunert;S. Schmidt;F. Thiele https://doi.org/10.1111/j.1525-1594.1995.tb02387.x
  9. J. Biomech. Eng. v.120 Alteration of mean wall shear stress near an oscillating stagnation point A. Hazel;T.J. Pedley https://doi.org/10.1115/1.2798306
  10. Am. J. Hypertens. v.6 Inflammatory mechanisms of atheroma formation. Influence of fluid mechanics and lipid-derived inflammatory mediators P.D. Henry;C.H. Chen
  11. Thrombosis and Hemorrhage (2nd ed.) Rheology J.M. Ross;B.R. Alevriadou;L.V. McIntire;J. Loscalzo(ed.);A.I. Schafer(ed.)
  12. Med. Eng. & Phys. v.25 Intraaneurysmal flow changes affected by clip location and clip magnitude in a lateral aneurysm model H.S. Byun;K. Rhee https://doi.org/10.1016/S1350-4533(03)00078-X
  13. AJNR v.20 An analysis of the geometry of saccular intracranial aneurysms L. Parlea;R. Fahrig;D.W. Holdsworth;S.P. Lownie
  14. Can. J. Physiol. Pharmacol. v.50 Comparison of the elastic properties of human intracranial areteries and aneurysm S. Scott;G.G. Ferguson;M.R. Roach https://doi.org/10.1139/y72-049
  15. Ph.D Thesis, Drexel University A study of pulsatile flows with non-Newtonian viscosity of blood in large arteries R.K. Banerjee
  16. Biophys. J. v.76 The forward rate of binding of two surface tethered reactants: Effects of relative motion between two surfaces K.C. Chang;D.A. Hammer https://doi.org/10.1016/S0006-3495(99)77291-7