Evaluation of Image Qualities for a Digital X-ray Imaging System Based on Gd$_2$O$_2$S(Tb) Scintillator and Photosensor Array by Using a Monte Carlo Imaging Simulation Code

몬테카를로 영상모의실험 코드를 이용한 Gd$_2$O$_2$S(Tb) 섬광체 및 광센서 어레이 기반 디지털 X-선 영상시스템의 화질평가

  • Jung, Man-Hee (Department of Biomedical Engineering, Yonsei University) ;
  • Jung, In-Bum (Department of Biomedical Engineering, Yonsei University) ;
  • Park, Ju-Hee (Department of Biomedical Engineering, Yonsei University) ;
  • Oh, Ji-Eun (Department of Radiological Science, Yonsei University) ;
  • Cho, Hyo-Sung (Department of Radiological Science, Yonsei University) ;
  • Han, Bong-Soo (Department of Radiological Science, Yonsei University) ;
  • Kim, Sin (Department of Nuclear & Energy Engineering, Cheju University) ;
  • Lee, Bong-Soo (Department of Biomedical Engineering, Konkuk University) ;
  • Kim, Ho-Kyung (School of Mechanical Engineering, Pusan National University)
  • 정만희 (연세대학교 보건과학대학 의공학부) ;
  • 정인범 (연세대학교 보건과학대학 의공학부) ;
  • 박주희 (연세대학교 보건과학대학 의공학부) ;
  • 오지은 (연세대학교 방사선학과) ;
  • 조효성 (연세대학교 방사선학과) ;
  • 한봉수 (연세대학교 방사선학과) ;
  • 김신 (제주대학교 에너지공학과) ;
  • 이봉수 (건국대학교 의공학부) ;
  • 김호경 (부산대학교 기계공학부)
  • Published : 2004.08.01

Abstract

in this study, we developed a Monte Carlo imaging simulation code written by the visual C$\^$++/ programing language for design optimization of a digital X-ray imaging system. As a digital X-ray imaging system, we considered a Gd$_2$O$_2$S(Tb) scintillator and a photosensor array, and included a 2D parallel grid to simulate general test renditions. The interactions between X-ray beams and the system structure, the behavior of lights generated in the scintillator, and their collection in the photosensor array were simulated by using the Monte Carlo method. The scintillator thickness and the photosensor array pitch were assumed to 66$\mu\textrm{m}$ and 48$\mu\textrm{m}$, respertively, and the pixel format was set to 256 x 256. Using the code, we obtained X-ray images under various simulation conditions, and evaluated their image qualities through the calculations of SNR (signal-to-noise ratio), MTF (modulation transfer function), NPS (noise power spectrum), DQE (detective quantum efficiency). The image simulation code developed in this study can be applied effectively for a variety of digital X-ray imaging systems for their design optimization on various design parameters.

본 연구에서는 디지털 X-선 영상시스템의 최적화 설계를 위하여 몬테카를로 방법을 이용한 영상모의실험용 코드를 visual $C^{++}$ 프로그래밍 언어를 사용하여 개발하였다. 디지털 X-선 영상시스템으로 Gd$_2$O$_2$S(Tb) 섬광체 및 광센서 어레이를 고려하였으며, 일반적인 실험 환경을 모사하기 위해 2차원 평행 그리드를 포함시켰다. X-선과 피사체, 그리드 및 섬광체와의 반응, 그리고 섬광체에서 발생된 빛의 거동 및 광센서 어레이에서의 수집을 몬테카를로 방법을 이용하여 모사하였다. Gd$_2$O$_2$S(Tb) 섬광체의 두께는 66$\mu\textrm{m}$로 설정하였으며, 광센서 어레이의 픽셀 피치는 48$\mu\textrm{m}$ 그리고 픽셀의 포맷은 256${\times}$256으로 가정하였다. 다양한 모의실험조건에서 X-선 영상을 획득한 후 객관적인 영상시스템의 성능평가 지표인 SNR(signal-to-noise ratio), MTF(modulation transfer function), NPS(noise power spectrum), DQE(detective quantum efficiency) 등을 계산하였으며, 이를 통해 화질을 평가하였다. 본 연구에서 개발된 영상모의실험 코드는 다양한 디지털 X-선 영상시스템에 대해 여러 설계변수들에 대한 성능을 예측함으로써 영상시스템 최적설계에 활용될 수 있다.

Keywords

References

  1. 연세대학교 대학원 석사학위논문 디지털 X-선 영상시스템의 설계를 위한 몬테칼로 모의실험에 관한 연구 홍대기
  2. Med. Phys. v.30 Image quality in two phosphore-based flat panel digital radiographic detectors Ehsan Samei https://doi.org/10.1118/1.1578772
  3. Proceedings of SPIE v.4320 DQE of Direct and Indirect Digital Radiographic Systems Ehsan Samei;Michael J. Flynn;Harrell G. Ghotas;James T. Dobbins, III https://doi.org/10.1117/12.430953
  4. Med. Phys. v.26 Experimental Comparison of Noise Resolution for 2k and 4k Storage Phosphor Radiography Systems Michael J. Flynn;Ehsan Samei https://doi.org/10.1118/1.598656
  5. IEEE Trans. Nucl. Sci. v.45 no.3 Simulation of the X-ray Response of Scintillator Coated Silicon CCDs C. Frojdh;H.E. Nillson;P. Nelvig;C.S. Peterson
  6. IEEE Nuclear Science Symposium v.2 Monte Carlo studies on the armorphous silicon based digital X-ray imagers H.K. Lee;K.S. Shinn;T.S. Shu;B.Y. Choe
  7. Medical X-ray Imaging Bruce H. Hasegawa
  8. Med. Phys. v.25 A Method for Measuring the Presampled MTF of Digital Radiographic Systems Using an Edge Test Device Ehsan Samei;Michael J. Flynn https://doi.org/10.1118/1.598165
  9. IEEE Trans. on Medical Imaging v.11 no.1 A Simple Method for Determining the Modulation Transfer Function Hiroshi Fujita;Du-Yih Tsai;Takumi Itoh;Kunio Doi;Junji Morishita;Katsuhiko Ueda;Akiyoshi Ohtsuka
  10. Med. Phys. v.26 Noise Power Spectra of Images from Digital Mammography Detector Mark B. Williams;Peter A. Manggiafico;Piero U. Simoni https://doi.org/10.1118/1.598623
  11. Med. Phys. v.26 Investigation of Basic Imaging Properties in Digital Radiography 2: Noise Power Spectrum M.L. Giger;K. Doli;C.E. Metz
  12. Med. Phys. v.27 Mammographic Imaging with a Small Format CCD-Based Digital Cassette: Physical Characteristics of a Clinical System Srinivasan Vedantham;Andrew Karellas;Sankararaman Suryanarayanan https://doi.org/10.1118/1.1286720
  13. Med. Phys. v.22 DQE(f) of Four Generations of Computed Radiography Aquisition Devices James T. Dobbins III;David L. Ergun;Lois Rutz;Dean A. Hinshaw;Hartwing Blum;Dwayn C. Clark https://doi.org/10.1118/1.597627
  14. Med. Phys. v.30 Image Quality in Two Phospor-based Flat Panel Digital Radiographic Detector Ehsan Samei https://doi.org/10.1118/1.1578772