Simulation of Nanoweb Morphology and Estimation of Nanoweb Characteristics

나노웹의 형태학적 모사와 특성 추정

  • Published : 2004.08.01

Abstract

A fundamental algorithm to simulate nanoweb morphology was developed. A nanofiber was generated by connecting beads of a fixed diameter. A single-layed nanoweb was created by repeating the nanofiber generation subroutine. The final nanoweb was constructed by superposing several layers of the simulated single-layered nanoweb. To estimate the pore size of the simulated nanoweb, an estimating algorithm was developed using a ghost particle having 0 mass and 0 volume. To assess the pore size and its distribution of the simulated nanoweb, the number of steps of the ghost particle to penetrate the web was measured.

Keywords

References

  1. J. Electrostatics v.35 Electrospinning Process and Application of Electrospun Fibers J. Doshi;D. H. Reneker https://doi.org/10.1016/0304-3886(95)00041-8
  2. Polymer v.40 Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Film C. J. Buchko;L. C. Chen;Y. Shen;D. C. Martin https://doi.org/10.1016/S0032-3861(98)00866-0
  3. Fiber Technology and Industry v.6 Nanofiber Technology and Applications S. M. Jo;W. S. Lee;S. W. Chen
  4. Polymer v.42 The Effect of Processing Variable, on The Morphology of Electrospun Nanofibers and Textiles J. M. Deitzel;K. Kleinmeyer;D. Harrks;N. C. B. Tan https://doi.org/10.1016/S0032-3861(00)00250-0
  5. J. Korean Fiber Soc. v.39 Nanofiber Formation of Poly(etherimide) under Various Electrospinning Conditions S. G. Lee;S. S. Choi;C. W. Joo
  6. Polymer(korea) v.26 The Effect of Processing Parameters on the Diameter of Electrospun Polyacrylonitrile (PAN) Nano Fibers Y. S. Kang;H. Y. Kim;Y. J. Ryu;D. R. Lee;S. J. Park
  7. Journal of Polymer Scienc: Part B: Polymer Physics v.41 Mechanical Behavior of Electrospun Fiber Mats of Poly(vinyl chloride) Polyurethane Polyblends K. H. Lee;H. Y. Kim;Y. J. Ryu;K. W. Kim;S. W. Choi https://doi.org/10.1002/polb.10482
  8. Polymer v.44 Mechanical behavior of Electrospun Polyurethane A. Pedicini;R. J. Farris https://doi.org/10.1016/j.polymer.2003.08.040
  9. Fiber Soc. Fall Technical Meeting v.54 Studies on the Intternal Structure of Nanofibers R. Dersch;T. Liu;A. K. Schaper
  10. Composite Science and Technology v.63 A Riview on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposite Z. M. Huang;Y. Z. Zhang;M. Kotaki;S. Ramakrishna https://doi.org/10.1016/S0266-3538(03)00178-7
  11. Text. Res J v.62 Evaluation of Crimp in Fibers Using Image Analysis: Definition, Algorithms and Techniques B. Xu;B. Pourdeyhimi;J. Sobus
  12. INDA Journal of Nonwovens Research v.5 Pore Size in Nonwovens Fabrics B. Pourdeyhimi;B. Xu
  13. International Nonwovens Journal v.6 Characterizing Pore Size in Nonwoven Fabrics: Shape Considerations B. Pourdeyhimi;B. Xu
  14. Text. Res. J. v.69 Measurement of Fiber Orientation in Nonwovens, Part 5:Real Webs B. Pourdeyhimi;R. Dent;A. Jerbi;S Tanaka https://doi.org/10.1177/004051759906900305
  15. Text. Res. J. v.69 Measurement of Fiber Diameter Distribution in Nonwovens B. Pourdeyhimi;R. Dent https://doi.org/10.1177/004051759906900401
  16. 입자성장 및 집합조직 변화에 대한 2차원 몬테카를로 시뮬레이션 v.142 이효남
  17. Journal - China Textile University - English Edition v.17 Simulation of Melt Blown Web and the Effect of Its Pore Size Distribution of Filtration Performance P. Ying;W. Shanyuan
  18. Composite v.32 Simulation of the Mechanical Properties of Fibrous Composites by the Bridging Micromechanics Model Z. M. Huang https://doi.org/10.1016/S1359-835X(00)00142-1
  19. Polymer v.42 The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles J. M. Deitzel;J. Kleinmeyer;D. Harrism;N. C. Beck Tan https://doi.org/10.1016/S0032-3861(00)00250-0