초록
본 논문에서는 ATM 망에서의 효율적인 트래픽 제어를 위하여 언어적인 규칙과 퍼지 추론부로 구성되는 퍼지로직에서 퍼지 규칙을 생성하였다. 퍼지 규칙 내부에 포함된 제어 파라메터들은 주어진 성능 함수를 최소화하도록 학습된다 즉, 발생된 저, 고순위 트래픽 도착 비율에 따라 퍼지집합 이론을 통하여 추론한 후 그 비퍼지화값으로 접속된 트래픽에 대해 버퍼에서의 임계값을 제어하도록 하였다. 또한, 생성된 퍼지 규칙의 타당성을 검증하기 위하여 MATLAB6.5에서와 온라인 빌드업으로 규칙에 대한 실험결과를 보인다. 그 결과, 고, 저 트래픽 도착 비율에 따라 효율적으로 버퍼에서의 임계값이 제어됨을 확인하였다.
In this thesis, we created a Fuzzy rule in a Fuzzy logic that are Fuzzy logic which is composed of linguistic rules and Fuzzy inference engine for effective traffic control in ATM networks. The parameters of the Fuzzy rules are adapted to minimize the given performance index in both cases. In other words, the difuzzification value controls the threshold in the buffer to arrival ratio to traffic priority (low or high) using fuzzy set theory for traffic connected after reasoning. Also, show experiment result about rule by MATLAB6.5 and on-line bulid-up to verify validity of created Fuzzy rule. As a result, we can verify that threshold value in buffer is efficiently controlled by the traffic arrival ratio.